Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
18
всего попыток:
38
18 монет пронумерованы с 1 до 18. Первому игроку известно, что монеты с номерами 1,2,...,9 настоящие, а монеты с номерами 10,11,..,18 - фальшивые. Обоим игрокам известно, что фальшивые монеты легче, чем настоящие (при этом все фальшивые весят одинаково, и все настоящие весят одинаково). Второму игроку неизвестно, ни сколько монет фальшивых, ни их номера. За какое минимальное количество взвешиваний на весах без гирек первый игрок может доказать второму, что монеты 1,2,...,9 - настоящие, а 10,11,..,18 - фальшивые?
Задачу решили:
47
всего попыток:
71
На совместной конференции партий лжецов и правдолюбов в президиум было избрано 32 человека, которых рассадили в четыре ряда по 8 человек. В перерыве каждый член президиума заявил, что среди его соседей есть представители обеих партий. Известно, что лжецы всегда лгут, а правдолюбы всегда говорят правду. При каком наименьшем числе лжецов в президиуме возможна описанная ситуация? (Два члена президиума являются соседями, если один из них сидит слева, справа, спереди или сзади от другого).
Задачу решили:
40
всего попыток:
91
Загадано число от 1 до 144. Разрешается выделить одно подмножество множества чисел от 1 до 144 и спросить, принадлежит ли ему загаданное число. За ответ "да" надо заплатить 2 рубля, за ответ "нет" — 1 рубль. Какая наименьшая сумма денег необходима для того, чтобы наверняка угадать число?
Задачу решили:
39
всего попыток:
68
Из бесконечной шахматной доски вырезали многоугольник со сторонами, идущими по сторонам клеток. Отрезок периметра многоугольника называется черным, если примыкающая к нему изнутри многоугольника клетка — черная, соответственно белым, если клетка белая. Пусть A — количество черных отрезков на периметре, B — количество белых, и пусть многоугольник состоит из 28 черных и 16 белых клеток. Чему равно A-B?
Задачу решили:
43
всего попыток:
51
Среди пяти внешне одинаковых монет 3 настоящие и две фальшивые, одинаковые по весу, но неизвестно, тяжелее или легче настоящих. Как за наименьшее число взвешиваний найти хотя бы одну настоящую монету? В ответе дайте количество взвешиваний.
Задачу решили:
34
всего попыток:
57
Даны числа 1, 2,..., N, каждое из которых окрашено либо в черный, либо в белый цвет. Разрешается перекрашиватьв противоположный цвет любые три числа, одно из которых равно полусумме двух других. Найти минимальное N при которо можно сделать все числа белыми?
Задачу решили:
25
всего попыток:
35
Среди 18 деталей, выставленных в ряд, какие-то три подряд стоящие весят по 99 г, а все остальные — по 100 г. За какое минимальное количество взвешиваний на весах со стрелкой и делениями по 1 грамму можно определить все 99-граммовые детали?
Задачу решили:
38
всего попыток:
65
В какое наибольшее число цветов можно раскрасить все клетки< доски размера 10x10 так, чтобы в каждой строке и в каждом столбце находились клетки не более, чем пяти различных цветов?
Задачу решили:
37
всего попыток:
65
На вечеринку пришли 100 человек. Затем те, у кого не было знакомых среди пришедших, ушли. Затем те, у кого был ровно 1 знакомый среди оставшихся, тоже ушли. Затем аналогично поступали те, у кого было ровно 2, 3, 4, . . . , 99 знакомых среди оставшихся к моменту их ухода. Какое наибольшее число людей могло остаться в конце?
Задачу решили:
35
всего попыток:
37
Выпуклый многоугольник разрезают непересекающимися диагоналями на остроугольные треугольники. Какое максимальное количество способов возможно.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|