Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
110
всего попыток:
715
Окружим Землю вдоль экватора ремнём, так чтобы он плотно прилегал к поверхности по всей длине. Землю будем считать идеальным шаром с радиусом 6 400 000 метров. Увеличим длину ремня на 1 метр. Теперь возьмём за одну точку ремня и натянем его так, чтобы ремень плотно прилегал к противоположной точке экватора, в результате точка, за которую мы потянули, поднимется над экватором на некоторую высоту. Чему будет равна эта высота? В ответе укажите ближайшее целое число метров.
Задачу решили:
21
всего попыток:
106
В межгалактическом соревновании Остапа Бендера участвовали 2012 шахматистов. Странной тройкой будем называть шахматистов X, Y и Z, если X побеждает Y, Y побеждает Z, а Z побеждает X. Какое наибольшее возможное количество странных троек может быть?
Задачу решили:
54
всего попыток:
147
Найдите минимальное натуральное число n, n>2, такое что сумма квадратов последовательных n натуральных чисел равна квадрату некоторого натурального числа.
Задачу решили:
74
всего попыток:
96
Найти максимальное значение параметра a, при котором верно неравенство: ax2-2x > 3a-1 для всех x <0.
Задачу решили:
56
всего попыток:
150
Известно, что a2+4b2=4 и cd=4. Чему равен минимум выражения (a-d)2+(b-c)2? Ответ укажите с точностью до 2-х знаков после запятой.
Задачу решили:
77
всего попыток:
80
Найти максимальное значение x+y, если известно, что y(x+y)2=9 и y(x3-y3)=7.
Задачу решили:
15
всего попыток:
181
Найти количество целых чисел n (2 ≤ n ≤ 100) для которых существует многочлен p(x) с действительными коэффициентами и степени меньшей n такой, что для всех целых x, p(x) является целым числом, тогда и только тогда, если x не кратно n.
Задачу решили:
24
всего попыток:
116
Последовательности действительных чисел an, bn (n=0,1, ...) заданы так, что a1=α, b1=β и an+1=αan-βbn, bn+1=βan+αbn для всех n≥1. Найдите количество пар числ (α,β) не равных нулю, таких что a1997=b1 и b1997=a1.
Задачу решили:
23
всего попыток:
107
Три точки выбираются случайным образом из внутренней части единичного круга. Найдите вероятность того, что окружность, проходящая через эти три точки лежит целиком внутри единичной окружности.
Задачу решили:
37
всего попыток:
58
Пусть Pn(x)=(x-1)(x-2)...(x-n), n=1, 2, 3, ..., 2015. Каждый Pn(x) запишем как многочлен от (x-2016) и рассмотрим свободные члены Qn. Например, P1(x)=(x-2016)+2015. Найти (Q1+Q2+...+Q2015)/2015!, ответ округлите до ближайшего целого.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|