Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
28
всего попыток:
51
Даны два правильных тетраэдра с ребрами длины 21/2, переводящихся один в другой при центральной симметрии. Пусть F — множество середин отрезков, концы которых принадлежат разным тетраэдрам. Найдите объем фигуры F.
Задачу решили:
38
всего попыток:
103
Высота и радиус основания цилиндра равны 1. Каким наименьшим числом шаров радиуса 1 можно целиком покрыть этот цилиндр?
Задачу решили:
33
всего попыток:
56
В гоночном турнире 12 этапов и n участников. После каждого этапа все участники в зависимости от занятого места k получают баллы ak (числа ak натуральны и a1 > a2 > . . . > an). При каком наименьшем n устроитель турнира может выбрать числа a1, . . . , an так, что после предпоследнего этапа при любом возможном распределении мест хотя бы двое участников имели шансы занять первое место.
Задачу решили:
46
всего попыток:
86
В семейном альбоме есть десять фотографий. На каждой из них изображены три человека: в центре стоит мужчина, слева от мужчины — его сын, а справа — его брат. Какое наименьшее количество различных людей может быть изображено на этих фотографиях, если известно, что все десять мужчин, стоящих в центре, различны?
Задачу решили:
59
всего попыток:
132
Вероятность появления автомобиля на шоссе за 30-минутный период составляет 0.95. Какова вероятность его появления за 10 минут? (Ответ укажите с точностью до второго знака после запятой.)
Задачу решили:
46
всего попыток:
55
Найти натуральное число n такое, что для углов остроугольного треугольника α, β, γ верно sin(nα)+ sin(nβ) + sin(nγ) < 0.
Задачу решили:
29
всего попыток:
36
Определим расстояние между числами a1a2a3a4a5 и b1b2b3b4b5 максимальное i, для которого ai ≠ bi. Найти минимально возможную сумму расстояний между всеми соседними пятизначными числами, расположенными, расположенными в некотором порядке.
Задачу решили:
28
всего попыток:
43
В колоде в неизвестном порядке лежат карточки на которых записаны все целые числа от 1 до 100. Вы можете задать вопрос в каком порядке относительно друг друга располагаются любые 50 чисел. За какое наименьшее число вопросов наверняка можно узнать порядок всех карточек с числами?
Задачу решили:
30
всего попыток:
55
Вовочка нашел наименьшее натуральное число, которое представяляет в виде суммы 2002 натуральных чисел, у которых одинаковая сумма цифр. Но, что удивительно, то его же можно представить в виде суммы 2003 чисел, обладающих таким же свойстовм относительно суммы цифр. Что это за число?
Задачу решили:
24
всего попыток:
42
Имеется 100 предметов, которые вместе весят 1000 грамм. Число m будем называть средним, если можно отобрать m предметов, которые весят 500 грамм. Какое максимальное количество средних чисел возможно?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|