Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
32
всего попыток:
44
На вписанной в равносторонний треугольник со стороной 1 окружности выбрана точка так, что расстояния от неё до вершин a, b и c составляют геометрическую прогрессию. Найдите b2.
Задачу решили:
48
всего попыток:
64
Вокруг каждой черной клетки шахматной доски описана окружность. Какая доля шахматной доски покрыта полученными кругами? Ответ укажите в процентах, округлив до целого.
Задачу решили:
50
всего попыток:
57
Вершины квадрата PQRS, лежат на сторонах остроугольного треугольника ABC. Вершины P и Q лежат на стороне AB, вершина R лежит на стороне BC, а вершина S лежит на стороне AC. Длина стороны квадрата равна 4, а |AB|=8. Надите площадь треугольника?
Задачу решили:
51
всего попыток:
60
Длины двух сторон треугольника равны 31 и 22. Медианы, проведенные к этим сторонам, перпендикулярны. Найти длину третьей стороны.
Задачу решили:
23
всего попыток:
48
Внутри квадрата расположены N точек так, что никакие три из N+4 точек (N поставленных и 4 вершины квадрата) не лежат на одной прямой. Некоторые из этих N+4 точек соединены отрезками так, что все отрезки не пересекаются (но могут иметь общие концы). Какое минимальное число точек необходимо поставить,чтобы оказалось не менее 2020 отрезков (не считая сторон квадрата)?
Задачу решили:
21
всего попыток:
29
На сторонах AB, BC и CA треугольника ABC расположены точки P, Q и R соответственно, при этом |AP| = |AR|, |BP| = |BQ| и |CQ| = |CR|. Какое максимальное количество разных наборов таких точек P, Q, R может существовать для протзвольного треугольника ABC?
Задачу решили:
45
всего попыток:
78
Найдите максимально возможную длину тени человека ростом 2 м. Землю считать идеальной сферой с радиусом 6400 км, которая освещается параллельными солнечными лучами. Ответ дайте в метрах, округлив до ближайшего целого.
Задачу решили:
58
всего попыток:
61
Из вершин B и D квадрата ABCD проведены отрезки к серединам противоположных сторон. В результате образовался четырехугольник BFDE. Найдите отношение площади четырехугольника к площади квадрата.
Задачу решили:
46
всего попыток:
48
В тупоугольном равнобедренном треугольнике срединные перпендикуляры к боковым сторонам делят основание на три равные части. Найти угол при основании в градусах.
Задачу решили:
62
всего попыток:
65
При сложении длин трех сторон прямоугольника получается либо 19, либо 20. Вычислите его периметр?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|