Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
55
всего попыток:
83
Два различные целых числа назовем зеркальными, если одно превращается в другое, если записать его цифры в обратном порядке, например, 123 и 321 - зеркальные числа. Сколько пар зеркальных чисел, которые оба находятся между 500 и 700 (числа из примера составляют одну пару, то есть пары [123, 321] и [321, 123] не различаются)?
Задачу решили:
48
всего попыток:
82
Найти самую длинную арифметическую прогрессию, состоящую из различных простых чисел меньших 200. В качестве ответа введите последнее число.
Задачу решили:
20
всего попыток:
44
Пусть a1, a2, ..., a2019 неотрицательные действительные числа, сумма которых равна 1. Найдите максимальное значение суммы всех произведений aiaj для всех различных i и j, таких что i|j (i - делитель j).
Задачу решили:
37
всего попыток:
64
Частичная сумма натурального ряда, за вычетом двух её слагаемых a и b (a < b), равна 2019. Сколько таких пар (a, b)?
Задачу решили:
60
всего попыток:
68
Из натурального числа равного n3 удалили последние три цифры, в результате получилось число n. Найдите сумму всех таких чисел n.
Задачу решили:
29
всего попыток:
34
Множество состоит из различных простых чисел таких, что сумма любых трех также является простым. Какое наибольшее количество чисел может содержать такое множество?
Задачу решили:
46
всего попыток:
68
В трехзначном числе убрали одну цифру и получили двухзначное, в котором также удалили цифру и получили однозначное, при этом сумма исходного трехзначного и двух новых чисел равна 1001. Сколько существует таких трехзначных чисел?
Задачу решили:
58
всего попыток:
60
Найти сумму всех таких целых чисел n для которых n+125 и n+201 являются квадратами целых чисел.
Задачу решили:
27
всего попыток:
110
Имеется пять различных положительных целых чисел таких, что суммы всех возможных наборов из них различны и при этом наибольшее из этих чисел минимально возможное. В качестве ответа введите максимально возможную сумму среди всех таких пятёрок чисел.
Задачу решили:
56
всего попыток:
58
p и q - простые числа такие, что pq+1=qp. Найдите наибольшее возможное произведение pq.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|