Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
38
всего попыток:
42
Имеется три стопки монет. За один ход можно из одной стопки переложить одну монету в другую. За ход Вовочка зарабатывает количество монет, равное разнице числа монет в стопке, из которой берется монета и числа монет в которую перекладывается. Если разница отрицательная, то у Вовочки забирается соответствующая сумма, если не хватает, то можно делать ходы в долг. В какой-то момент после перекладывания, все монетки оказались в первоначальных стопках. Какое максимальное количество монет мог заработать Вовочка?
Задачу решили:
31
всего попыток:
50
Гидры состоят из голов и шей (любая шея соединяет ровно две головы). Одним ударом меча можно снести все шеи, выходящие из какой-то головы A гидры. Но при этом из головы A мгновенно вырастает по одной шее во все головы, с которыми A не была соединена. Геракл побеждает гидру, если ему удастся разрубить ее на две несвязанные шеями части. Найдите наименьшее N, при котором Геракл сможет победить любую стошеюю гидру, нанеся не более, чем N ударов.
Задачу решили:
37
всего попыток:
55
В компании из 9 мушкетёров некоторые поссорились и вызвали друг друга на дуэль. Известно, что среди них нет трех таких, что все они должны драться друг с другом. Какое максимальное число мушкетёров при любой комбинации гарантированно не поссорятся друг с другом.
Задачу решили:
31
всего попыток:
52
На окружности размещены 10 точек. Найдите количество вариантов соединения всех точек попарно 5-ю непересекающимися хордами.
Задачу решили:
34
всего попыток:
50
Все 20 клеток в ряду закрашивают в красный и синий цвета так, чтобы не было рядом более чем 2 клетки одного цвета. Найдите количество вариантов такой раскраски.
Задачу решили:
22
всего попыток:
125
Сколько существует способов разломать плитку шоколада размера 6x4 на части 2x1?
Задачу решили:
26
всего попыток:
38
Шесть химиков синтезировали 6 новых химических веществ - у каждого есть ровно 1 грамм своего нового вещества. Когда два химика встречаются, они складывают запасы всех имеющихся у них в этот момент веществ, делят их поровну и забирают себе по половине. После 8 таких встреч оказалось, что у каждого из химиков есть не менее чем x грамм каждого вещества. Найдите наибольшее возможное значение x.
Задачу решили:
58
всего попыток:
107
14 школьников ходят в разные кружки. В кружке может быть не менее 3 школьников, при этом каждый школьник ходит не более чем в 2 кружка и нет ни одного кружка, в котором один состав школьников. Какое максимальное количество кружков может быть?
Задачу решили:
28
всего попыток:
66
В русском алфавите 33 буквы. Посчитайте сколько можно составить слов из 6 букв таких, что в словах используются только разные буквы, и не встречаются буквы, которые стоят в алфавите рядом. Например, слово "ОГУРЕЦ" удовлетворяет условию, а "СВЁКЛА" - нет
Задачу решили:
25
всего попыток:
54
Грузовик заполняют ящиками с овощами. Всего в него помещается ровно 2018 ящиков. При загрузке соблюдают следующие ограничения: Сколько существует способов наполнения грузовика?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|