Лента событий:
MMM добавил комментарий к задаче "Простые делители типа 4k+3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
55
Найдите все пары взаимно простых чисел a и b (a > b), для которых (a + b)/(a2 − ab + b2) = 3/13. В ответе укажите сумму значений всех пар (ai+bi).
Задачу решили:
64
всего попыток:
69
Найдите сумму всех двузначных чисел, квадрат которых равен кубу суммы их цифр.
Задачу решили:
33
всего попыток:
80
За круглым столом сидит компания из тридцати человек. Каждый из них либо дурак, либо умный. Всех сидящих спрашивают: - Кто Ваш сосед справа — умный или дурак? В ответ умный говорит правду, а дурак может сказать как правду, так и ложь. Известно, что количество дураков не превосходит F. При каком наибольшем значении F всегда можно, зная эти ответы, указать на умного человека в этой компании?
Задачу решили:
93
всего попыток:
108
Вовочка складывал два числа и к одному дописал лишнюю последнюю цифру. В итоге вместо суммы 12345 получил 44444. Найдите большее из изначальных чисел.
Задачу решили:
64
всего попыток:
157
Сколько раз в сутки все три стрелки - часовая, минутная и секундная - совпадают?
Задачу решили:
59
всего попыток:
132
Вероятность появления автомобиля на шоссе за 30-минутный период составляет 0.95. Какова вероятность его появления за 10 минут? (Ответ укажите с точностью до второго знака после запятой.)
Задачу решили:
30
всего попыток:
45
В правильном десятиугольнике ABCDEFGHIJ со стороной 1 проведена прямая Q1Q2, так что в треугольнике Q1AQ2: |Q1A|+|AQ2|=1. Найдите сумму всех углов в градусах, под которыми виден отрезок Q1Q2 из всех вершин за исключением вершины A.
Задачу решили:
58
всего попыток:
63
Пятиугольник ABCDE делится отрезком BD на ромб ABDE и равносторонний треугольник BCD. Чему равен угол ACE (в градусах)?
Задачу решили:
46
всего попыток:
61
В таблицу размера 37 на 37 вписаны все числа от 1 до 37, так что каждое из них встречается по 37 раз. При этом сумма чисел над главной диагональю в 3 раза больше суммы чисел под ней. Найдите число, которое записано в центральной ячейке.
Задачу решили:
69
всего попыток:
91
Решить уравнение k+1/(m+1/n)=30/7, где k, m, n - натуральные числа. Чему равно k+m+n?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|