Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
50
всего попыток:
57
В треугольнике |BA1|=|A1A2|=|A2C|, |AC1|=|C1B|, |C1Y|=4. Найти |XY|.
Задачу решили:
55
всего попыток:
62
Какая площадь больше - синяя или красная?
Задачу решили:
63
всего попыток:
81
Найдите площадь розовой части.
Задачу решили:
74
всего попыток:
94
Через какое максимальное количество синих точек можно пройти по дороге от красной точки к зеленой при условии, что ни по какой линии между точками нельзя проходить дважды? (Можно ходить только по прямым линиям и синим точкам.)
Задачу решили:
55
всего попыток:
83
Даны 6 различных натуральных чисел. Рассмотрим их попарные суммы. Какое максимальное количество простых чисел могут составлять эти суммы?
Задачу решили:
41
всего попыток:
75
Вова и Маша печатают свои собственные деньги, у каждого свои купюры одного достоинства X и Y, соответственно. Как выяснилось, при помощи комбинации купюр можно сложить почти любые положительные целые числа, кроме 15 чисел. Одним из таких чисел является 18. Найти X+Y.
Задачу решили:
87
всего попыток:
134
Разными буквами обозначены разные цифры: AB Найти минимальное значение суммы.
Задачу решили:
30
всего попыток:
79
Пусть действительные числа a, b, c, d такие, что a2+b2+c2+d2=1, а m и M - минимум и максимум выражения: ab+ac+ad+bc+bd+3cd. Найти значение (2(m+M)+1)2.
Задачу решили:
33
всего попыток:
51
Взаимно простые натуральные числа p и q такие, что pn-qn+2=(p+q)n-1 (целое n>1). Найди сумму всех возможных p.
Задачу решили:
108
всего попыток:
121
В центре квадрата указано количество мин, которые спрятаны в его углах. Сколько всего мин?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|