Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
10
всего попыток:
25
Вовочка называет ненулевую цифру, а Маша вставляет ее вместо одной из звёздочек в выражение **** - **** (разность двух четырехзначных чисел). Вовочка может одну цифру назвать только один раз. Цель Вовочки - получить после восьми ходов максимальное значение выражения, а цель Маши - минимальное. Каким будет значение выражения при идеальной игре обоих?
Задачу решили:
76
всего попыток:
80
Площадь десятиугольника равна 100, найти площадь оранжевой полосы.
Задачу решили:
26
всего попыток:
38
Шесть химиков синтезировали 6 новых химических веществ - у каждого есть ровно 1 грамм своего нового вещества. Когда два химика встречаются, они складывают запасы всех имеющихся у них в этот момент веществ, делят их поровну и забирают себе по половине. После 8 таких встреч оказалось, что у каждого из химиков есть не менее чем x грамм каждого вещества. Найдите наибольшее возможное значение x.
Задачу решили:
25
всего попыток:
97
Имеется 100 неотличимых по виду шаров, среди которых 51 радиоактивный. При помощи детектора радиоактивности, на который умещается не более двух шаров, и его чувствительность невысока, поэтому он срабатывает только если оба шара активны. За какое минимальное количество тестов можно гарантированно найти все радиоактивные шары?
Задачу решили:
51
всего попыток:
60
На стороне 12-угольника построен квадрат. Найдите отмеченный угол в градусах.
Задачу решили:
64
всего попыток:
68
Два квадрата K1 и K2 пересекаются так, что площадь пересечения составляет 48% от площади квадрата K1 и 27% от площади квадрата K2. Найти отношение стороны квадрата K1 к стороне квадрата K2.
Задачу решили:
57
всего попыток:
80
Студенты института физкультуры пять раз сдавали один и тот же зачет по арифметике. Те, кто не сдал зачет, приходили следующий раз. Каждый раз зачет сдавала треть всех пришедших студентов и еще треть студента. Какое наименьшее количество студентов, так и не сдали зачёт за пять раз?
Задачу решили:
103
всего попыток:
108
В счастливом билетике оказались стертыми первая и последняя цифры и остались цифры 1475. Определите полный номер билетика, если известно, что он состоял из разных цифр. (Счастливым называется билетик в котором сумма первых трех чисел равна сумме последних трех.)
Задачу решили:
58
всего попыток:
107
14 школьников ходят в разные кружки. В кружке может быть не менее 3 школьников, при этом каждый школьник ходит не более чем в 2 кружка и нет ни одного кружка, в котором один состав школьников. Какое максимальное количество кружков может быть?
Задачу решили:
44
всего попыток:
76
В кубе со стороной 100 см вложили 9 шаров одинакового размера так, что один шар находится в центре куба, а каждый остальной касается его и еще ровно трех поворхностей куба. Найдите радиус шара. Ответ округлите до ближайшего целого числа.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|