Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
54
всего попыток:
61
Пять детей решали задачи. Каждую задачу кто-то один из детей решил неправильно, а остальные — правильно. Вовочка решил меньше всех - 10 задач, а Машенька больше всех - 13. Сколько всего было задач?
Задачу решили:
44
всего попыток:
51
Вовочка и Машенька участвуют в школьной гонке. Трасса разделена на 42 участка одинаковой длины, в начале каждого участка — контрольный пункт. Вовочка пробегает участок за 9 мин, а Машенька — за 11 мин. У них есть один на двоих самокат, на котором любой из них проезжает один участок за 3 мин. Они стартуют одновременно, а на финише засчитывается время пришедшего последним. Дети договорились, что сначала Вовочка проезжает первую часть трассы на самокате, оставляет его в одном из контрольных пунктов и бежит дальше, а Машенька — наоборот сначала бежит, потом берет самокат и едет остальную часть. Сколько участков должен проехать на самокате первый, чтобы их результат был наилучшим?
Задачу решили:
59
всего попыток:
65
При отправке в пионерский лагерь детей рассаживали по автобусам так, чтобы в каждом было их одинаковое количество. Если в каждый автобус посадить по 22 ребенка, то останется один ребенок, а если убрать один автобус, то в каждый автобус можно посадить одинаковое количество детей. Сколько изначально было автобусов, при условии, что их было более двух?
Задачу решили:
42
всего попыток:
74
Полный комплект домино (28 костяшек) разложить на несколько кучек так, чтобы суммы очков в кучках составляли последовательные простые числа. Чему равно наибольшее число таких кучек?
Задачу решили:
43
всего попыток:
72
Найти сумму всех натуральных чисел, оканчивающиеся на 2006, которые после зачеркивания последних четырех цифр уменьшаются в целое число раз.
Задачу решили:
52
всего попыток:
72
От центра окружности на расстоянии 5 проведена хорда. В оба получившихся сегмента вписаны квадраты, так что у обоих одна сторона лежит на хорде, а еще две точки на окружности. Найти разность длины сторон большего и меньшего квадрата.
Задачу решили:
42
всего попыток:
68
Имеется 11 монет с различными целыми весами. Сумарный вес любых семи монет больше суммарного веса оставшихся четырех. Найдите наименьший возможный суммарный вес всех монет.
Задачу решили:
57
всего попыток:
69
Удалите из ряда целых чисел от 8 до 17 включительно наименьшее количество, чтобы произведение оставшихся было точным квадратом. В качестве ответа укажите сумму всех удаленных чисел.
Задачу решили:
53
всего попыток:
74
Несколько бетонных блоков, каждый из которых имеет вес не более одной тонны, вместе весят 10 тонн. Сколько грузовиков, которые могут увезти не более 3-х тонн, заведомо достаточно, чтобы увезти все блоки?
Задачу решили:
50
всего попыток:
58
(слева температура по Цельсию, справа по Фаренгейту). Найдите .
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|