Лента событий:
MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
47
всего попыток:
227
Вдоль дороги расставлены светофоры на расстоянии 1 км друг от друга. В течение 1 минуты с начала каждого часа на них загорается красный свет, запрещая проезд, а остальное время горит зеленый свет. Мотоциклист начинает движение с постоянной скоростью у светофора, на котором только что загорелся красный свет и за 10 часов пути ни разу не встретил красного света (ни разу не затормозил). Какое наибольшее расстояние он мог проехать за это время? Ответ округлите до целого числа метров.
Задачу решили:
40
всего попыток:
194
Множество X состоит из различных (но не всех) натуральных чисел от 1 до 2010 включительно и не содержит ни одной степени двойки с целым показателем. Кроме того, сумма любых двух чисел из X не равна степени двойки ни с каким целым показателем. Найдите наибольшее количество чисел в X.
Задачу решили:
98
всего попыток:
212
Найдите наибольшее n, для которого число 3·33·333·...·33...3 (в десятичной записи последнего множителя ровно 2010 троек) делится на 3n.
Задачу решили:
86
всего попыток:
110
В квадратную таблицу n×n записаны все натуральные числа от 1 до n2 в следующем порядке: числа от 1 до n — в первой сверху строке слева направо, числа от n+1 до 2n — во второй сверху строке слева направо, и т. д. Выберем n чисел из этой таблицы так, чтобы из каждой строки было выбрано ровно 1 число и из каждого столбца было выбрано ровно 1 число. Какие значения может принимать сумма всех выбранных нами чисел? В ответе запишите сумму всех возможных значений при n=2011.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|