Лента событий:
makar243 решил задачу "Новогодний пример не для программистов." (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
101
всего попыток:
128
Найдите минимум x8+x4+x2+y8+y4+y2 при условии x+y=1.
Задачу решили:
52
всего попыток:
109
В равнобедренный треугольник ABC с периметром P вписан ромб со стороной a. Одна сторона ромба лежит на основании, другая, смежная, – на боковой стороне треугольника. P и a – целые числа; площади ромба и треугольника относятся друг к другу как 4:9. Найдите такое значение a, при котором |P-100| минимально. В качестве ответа укажите сумму периметра ΔABC и стороны ромба (P+a).
Задачу решили:
63
всего попыток:
96
В прямоугольный треугольник, длины сторон которого составляют арифметическую прогрессию, вписана окружность, а в неё – ещё два прямоугольных треугольника. Один из этих треугольников подобен исходному («большому»), другой – равнобедренный. Площадь исходного треугольника – S1, вписанных – S2 и S3. Найдите значение (S2+S3)/S1.
Задачу решили:
58
всего попыток:
127
В окружность вписан равносторонний треугольник А1В1С1 с площадью S1. У второго равностороннего треугольника А2В2С2 с площадью S2 вершины А2 и С2 также лежат на окружности, а В2 – середина отрезка А1С1 (см. рисунок). Учитывая, что А1В1||А2В2, найдите S1/S2. В ответе укажите значение [10•S1/S2].
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|