![]()
Лента событий:
avilow добавил комментарий к задаче "Кубические корни" (Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
17
всего попыток:
28
Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. При этом исходный треугольник оказался разделен на части. На картинке изображены треугольники при n=32. Найдите соотношение площади части, полученной в центре, к площади исходного треугольника, когда n стремится к бесконечности. ![]()
Задачу решили:
5
всего попыток:
7
В кубе ABCDA1B1C1D1 с ребром 1 проведен отрезок, соединяющий вершину A куба с центром грани A1B1C1D1. Этот отрезок начинает непрерывно «скользить» своими концами по двум скрещивающимся диагоналям AC и B1D1 противоположных граней куба, не меняя своей длины. Двигаясь таким образом, отрезок охватывает объёмную фигуру, изображенную на рисунке. Найдите площадь проекции S этой фигуры на нижнюю грань куба. В качестве ответа введите [100 000 000*S], где [x] целая часть числа.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|