img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: MikeNik решил задачу "Две чевианы и отрезок" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
+ 10
+ЗАДАЧА 762. Хитрое уравнение (И. Андреев, Н. Кушпель, Ф. Бахарев, Ф. Петров)
  
Задачу решили: 128
всего попыток: 136
Задача опубликована: 11.07.12 08:00
Прислал: nauru img
Источник: Олимпиада по математике г.Санкт-Петербурга
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: VFChistov (Виктор Чистяков)

Решите уравнение в натуральных числах 
n3-5n+10=2k. Чему равно nk?

+ 10
+ЗАДАЧА 803. Числа (Ростовский Д.)
  
Задачу решили: 117
всего попыток: 132
Задача опубликована: 15.10.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

Натуральные числа х,у меньше 2009. Известно,что х делится на 54, у делится на 31, х+у делится на 85. Найти остаток от деления  х-у на 23

Задачу решили: 68
всего попыток: 69
Задача опубликована: 12.11.12 08:00
Прислал: nauru img
Источник: Санкт-Петербургская математическая олимпиада
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На стороне ВС трегольника АВС отмечены точки M и N, что CM = MN = NB. К стороне ВС в точке N построен перпендикуляр, пересекающий АВ в точке К. Оказалось что площадь треугольника АМК в 4.5 раза меньше площади исходного треугольника. Найти отношение AB/AC 

Задачу решили: 72
всего попыток: 165
Задача опубликована: 23.11.12 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Angelina

BC — основание равнобедренного треугольника ABC, BD — биссектриса угла B. Выполнено равенство BC = AD+BD. Найдите угол A (в градусах).

Задачу решили: 59
всего попыток: 75
Задача опубликована: 18.02.13 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Последовательности (an) и (bn) заданы условиями an+3 = an+2+2an+1+an при n ? 0, a0 = 1, a1 = 2, a2 = 3; bn+3 = bn+2+2bn+1+bn при n ? 0, b0 = 3, b1 = 2, b2 = 1. Сколько существует чисел, встречающихся в обеих последовательностях?

Задачу решили: 32
всего попыток: 250
Задача опубликована: 20.02.13 08:00
Прислал: nauru img
Источник: Уральский Турнир Юных математиков
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Angelina

При каком наименьшем k в любой раскраске клеток таблицы 2012?k в 1006 цветов найдутся четыре клетки одного цвета, стоящие на пересечении двух строк и двух столбцов?

Задачу решили: 58
всего попыток: 78
Задача опубликована: 20.03.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2006
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Диагонали вписанного четырехугольника ABCD пересекаются в точке P. Центры описанных окружностей треугольников APB и CPD лежат на описанной окружности ABCD. Найдите угол между прямыми AC и BD (APD).

Задачу решили: 71
всего попыток: 114
Задача опубликована: 17.04.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100

Несколько (больше одного) человек, каждый из которых вначале имеет 300 долларов, играют в казино. Один раунд игры заключается в следующем. Все игроки отдают по 10 долларов крупье, затем один из них по жребию объявляется проигравшим. Он раздаёт все свои деньги поровну всем остальным и выходит из игры. В итоге оказалось, что у последнего оставшегося игрока капитал вновь составляет 300 долларов. Сколько человек пришло в казино?

Задачу решили: 58
всего попыток: 81
Задача опубликована: 15.05.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова 2005
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: perfect_result... (Александр Опарин)

На острове живёт 2013 аборигенов, каждый из которых либо лжец (лжецы всегда лгут), либо рыцарь (рыцари всегда говорят правду). Некоторые аборигены знакомы друг с другом, причём каждый лжец имеет знакомого среди рыцарей, а каждый рыцарь знакомого среди лжецов. Каждый абориген сделал заявление: "Среди моих знакомых лжецов больше, чем рыцарей". Затем правитель острова казнил одного из аборигенов, и после этого каждый абориген сделал заявление: "Среди моих знакомых рыцарей больше, чем лжецов". Сколько рыцарей было на острове изначально?

Задачу решили: 63
всего попыток: 89
Задача опубликована: 03.06.13 08:00
Прислал: nauru img
Источник: Кубок Колмогорова
Вес: 1
сложность: 2 img
класс: 8-10 img
баллы: 100
Лучшее решение: Bulat (Миха Булатович)

Найдите сумму всех натуральных p таких, что число 4x2 + p — простое при всех x = 0, 1, …, p-1.  

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.