Лента событий:
fortpost решил задачу "Плохое место" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
98
всего попыток:
136
На какие цифры не может оканчиваться натуральное число [x]+[3x]+[6x] если х > 0 - вещественное число (через [x] обозначается целая часть x , т.е наибольшее целое число, не превосходящее x). В ответе укажите произведение цифр.
Задачу решили:
69
всего попыток:
88
Даны две арифметические прогрессии a1, a2… и b1, b2, …. (арифметическая прогрессия — это последовательность, в которой an = an–1+d, где d — некоторое число, единое для всей последовательности). Известно, что a1 = b1, и для каждого номера i остатки от деления ai и bi на i совпадают. Найдите значение выражения a2012- b2012.
Задачу решили:
105
всего попыток:
117
Известно, что число ababab делится на 217. Найдите сумму возможных значений ab. (Здесь a, b - десятичные цифры, ababab и ab - числа, составленные из этих цифр.)
Задачу решили:
42
всего попыток:
62
Найдите наибольшее натуральное k такое, что любые положительные числа, удовлетворяющие неравенству a2 > bc, удовлетворяют также неравенству (a2–bc)2 > k(b2–ca)(c2–ab).
Задачу решили:
89
всего попыток:
99
Про функцию f(x) известно, что f(1) = 1, и для любых x, y выполнено тождество f(x+y) = 2xf(y)+3yf(x). Найдите f(15).
Задачу решили:
59
всего попыток:
62
Найдите максимальное значение f(1) если f: Z ? Z такая, что для любых целых чисел х и у выполнено равенство f(f(x)+y+1) = x+f(y)+1.
Задачу решили:
55
всего попыток:
69
Найдите f(2012) если f: NxN такая, что f(m–n+f(n)) = f(m)+f(n) при всех m, n из N.
Задачу решили:
65
всего попыток:
77
Последовательность x1, x2, x3,…, задана формулой xn = 2n(n+1). Какое наибольшее количество подряд идущих её членов могут быть точными квадратами?
Задачу решили:
62
всего попыток:
69
Функция f определена на множестве всех натуральных чисел, принимает значения в множестве натуральных чисел, и одно из её значений равно 1. Кроме того известно, что для любого натурального n выполнено равенство f(n+f(n)) = f(n). Найдите f(2014).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|