![]()
Лента событий:
TALMON
добавил решение задачи
"Сравнение множеств"
(Математика):
![]()
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
16
всего попыток:
368
Вернувшись из своего путешествия на Луну, Незнайка решил написать книгу о своих приключениях. Каждый вечер он читал новую главу из неё своим друзьям и однажды прочитал им следующие невероятные события: "Однажды утром Спрутс бросил меня в огромную пещеру с абсолютно гладкими гранитными стенами, которая представляла собой точный куб размерами 100x100x100 метров. Я стоял на краю небольшой ниши, нижний край которой был ровно в центре вертикальной грани этого куба. Выход на волю (его нижний край) был ровно в центре противоположной от меня грани. Присмотревшись, я увидел канат висящий от выхода до пола. Если бы я как-то спустился на пол пещеры, я легко выбрался бы взобравшись по нему. Однако я был на высоте 50 метров от пола и не мог спрыгнуть. К счастью, у меня был подарок Миги: чудесный моток точно такого же каната. Сколько каната из него ни вытягивай, можно вытянуть еще столько же и так далее. Правда он был немного неудобный, в сечении это был не круг, а квадрат со стороной 2 см. Достаточно толстый, но очень гибкий и скользкий. Как я ни старался, я так и не смог закрепить канат, чтобы спуститься по нему вниз. Исследовав всю небольшую нишу, я нашел ножницы, которыми можно было перерезать канат. Выхода из ситуации не было, однако поразмыслив я все же смог выбраться!" "Враньё от первого до последнего слова!" — засмеялись все находившиеся в комнате коротышки, однако профессор Звёздочкин сказал, что при этих условиях у Незнайки действительно был один способ, чтобы выбраться из пещеры, и Знайка с ним согласился. Какое наименьшее количество метров каната нужно было вытянуть Незнайке из мотка, чтобы выбраться? (Считаем, что размеры Незнайки точечные, любой прыжок на любую высоту вверх или вниз смертелен). ![]()
Задачу решили:
55
всего попыток:
659
В одном плоском лесу есть бесконечно много деревьев. Расстояние между любыми двумя деревьями - целое число метров. Рассмотрим три дерева, стояших в точках A, B и C. Какое минимально возможное положительное значение угла ABC в градусах? ![]()
Задачу решили:
30
всего попыток:
406
Дан треугольник ABC. Дан ещё один треугольник BCD, точки A и D находятся на той же стороне от прямой BC, и углы: CAB=DBC, ACB=BDC. Дан ещё один треугольник CDE, точки B и E находятся на той же стороне от прямой CD, и углы: DBC=ECD, BDC=CED. Дан ещё один треугольник DEF, точки C и F находятся на той же стороне от прямой DE, и углы: ECD=FDE, CED=DFE. И так далее по алфавиту почти до конца: последний треугольник - WXY. Чему равна длина отрезка AY, если |AB|=1, |BC|=31/2, а угол ABC=5π/6? ![]()
Задачу решили:
30
всего попыток:
380
Известно, что радиус вписанной в треугольнике окружности равен 6, а радиус описанной около него окружности равен 65/3. ![]()
Задачу решили:
25
всего попыток:
304
При каком наименьшем натуральном n в любом наборе из n действительных чисел больших 10, но меньших 2013 заведомо найдется пара a, b, такая что |(a - b) (ab - 100)| < 10ab? ![]()
Задачу решили:
24
всего попыток:
344
Внутреннюю точку выпуклого четырёхугольника соединили с серединами всех его сторон. Четырёхугольник разделился на четыре четырёхугольника. Два из них имеют площади 311 и 183. Какую минимальную целочисленную площадь мог иметь исходный четырёхугольник? ![]()
Это открытая задача
(*?*)
Найдите наименьший положительный корень уравнения: 8x3-6x+1=0. Напишите точный ответ в виде математического выражения без кубических корней. ![]()
Задачу решили:
4
всего попыток:
53
Дан квадрат ABCD. Какое минимальное количество прямых нужно провести с помощью линейки без делений, чтобы разделить его на 5 равновеликих частей? ![]()
Задачу решили:
5
всего попыток:
28
Фигуру, изображенную на правильной треугольной решетке, разрежьте на несколько частей и сложите из них правильный шестиугольник. В ответе укажите наименьшее число частей. ![]()
Задачу решили:
7
всего попыток:
53
Поверхность куба разрезать на минимальное число частей так, чтобы ими оклеить без наложений и просветов два равных куба. Чему равно это число?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|