Лента событий:
MikeNik решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
8
всего попыток:
53
Сколько различных центрально-симметричных фигур можно сложить из трёх произвольных различных пентамино? Каждая фигура, даже если её можно сложить несколькими способами, как, например, эта считается только один раз.
Задачу решили:
5
всего попыток:
15
Расставьте в левой части равенства 4598722=2024 любое количество символов из набора +-*/() так, чтобы оно стало верным. Переставлять цифры местами нельзя. Правая часть равенства должна остаться без изменения. Введите в ответ количество существенно различных вариантов решения, а в подробном решении покажите эти варианты. [Если значения левых частей двух вариантов окажутся равными при замене всех цифр на единицы, то такие варианты "существенно различными" не считаются. Например варианты:
Задачу решили:
9
всего попыток:
40
Укажите количество центрально-симметричных фигур, каждую из которых можно сложить не меньше, чем двумя способами из одних и тех же трёх различных пентамино.
Задачу решили:
8
всего попыток:
66
Сколько различных центрально-симметричных фигур можно сложить из трёх произвольных различных пентамино? Каждая фигура считается столько раз, сколькими разными способами её можно сложить. Например, такая фигура считается два раза.
Задачу решили:
7
всего попыток:
18
За какое минимальное количество поворотов на 180 градусов можно "перекрасить" собаку, построенную (сконструированную) из змейки Рубика (см. рисунки)?
Задачу решили:
9
всего попыток:
15
За какое минимальное количество ходов можно из фигуры А змейки Рубика: получить фигуру Б? Покажите пример решения. Ходом считается один поворот двух частей змейки Рубика на 180 градусов вокруг одного шарнира.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|