Лента событий:
vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
25
всего попыток:
25
В пятизначном числе зачеркнули одну цифру и сложили получившееся число с исходным. В результате получилось 54321. Найдите исходное число.
Задачу решили:
13
всего попыток:
15
На какое наименьшее число остроугольных треугольников можно разрезать прямоугольник?
Задачу решили:
23
всего попыток:
27
Вовочка из натурального ряда от 1 до 2024 сначала вычеркнул первое, третье, пятое числа. Из оставшегося ряда он снова вычеркнул первое, третье, пятое. Он занимался этим до конца урока, пока не осталось единственное невычеркнутое число. Какое число осталось?
Задачу решили:
22
всего попыток:
25
По кругу стоят 7 диванов, на них сидит всего 50 человек, на каждом диване - хотя бы один человек. Каждый сказал:"На следующем по часовой стрелке диване ровно половина людей выше меня, а ровно половина - ниже." Какое наибольшее число людей могло сказать правду?
Задачу решили:
26
всего попыток:
26
Вовочка из натурального ряда от 1 до 2024 сначала вычеркнул первое, третье, пятое и так далее числа. Из оставшегося ряда он снова вычеркнул первое, третье, пятое и так далее числа. Он занимался этим до конца урока, пока не осталось единственное невычеркнутое число. Какое число осталось?
Задачу решили:
24
всего попыток:
33
Какое максимальное количество простых чисел можно записать, использовав каждую из десяти цифр от 0 до 9 ровно по одному разу?
Задачу решили:
21
всего попыток:
28
Найти сумму натуральных чисел n, которые можно представить в виде суммы n=a2+b2, где a — минимальный делитель n, отличный от 1, и b — какой-то делитель n.
Задачу решили:
9
всего попыток:
13
В бумажном квадрате 7х7 на рисунке вырезан меньший квадрат так, что его вершины находятся в узлах решетки. Разрежьте эту фигуру на несколько частей и переложите их так, чтобы получился квадрат 7х7 с квадратной дырой в центре, причем стороны квадратной дыры были параллельны сторонам исходного квадрата. Разрезы можно делать любой формы. В ответе укажите наименьшее число частей разрезания.
Задачу решили:
19
всего попыток:
21
В числовом ребусе
Задачу решили:
20
всего попыток:
28
Девочка пронумеровала черные клетки шахматной доски 8х8 числами от 1 до 32 в натуральном порядке так, как показано на рисунке. Мальчик собирается пронумеровать числами от 1 до 32 белые клетки этой доски так, чтобы суммы четырех чисел в любом квадрате 2х2 оказались равными. Сколькими различными способами мальчик сможет это сделать? В ответе укажите сумму всех чисел, расположенных на «белой» диагонали всех возможных решений (эти клетки отмечены звездочками).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|