img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 70
всего попыток: 104
Задача опубликована: 26.09.11 08:00
Прислал: demiurgos img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

Найдите наибольшее значение n≤2011, при котором в клетках доски n×n можно расставить фишки так, чтобы на любых двух горизонталях стояли одинаковые количества фишек, а на любых двух вертикалях — различные. (В одну клетку можно поставить не более одной фишки, а каждая фишка должна занимать ровно одну клетку.)

Задачу решили: 152
всего попыток: 195
Задача опубликована: 06.10.11 08:00
Прислала: Ulkas img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Vkorsukov

Сомыч сделал шкаф в форме квадрата 3×3 с девятью отделениями. Внутреннее отделение он оставил свободным для пустых бутылок, а в остальных расположил 60 бутылок масла —по 9 в средних и по 6 в угловых. Таким образом, на каждой стороне квадрата получилось по 21 бутылке. Слуга Зая подметил, что хозяин проверяет число бутылок, считая бутылки только по сторонам квадрата и следя за тем, чтобы на каждой стороне квадрата было ровно по 21 бутылке. Тогда Зая унёс 4 бутылки, а остальные расставил так, что вновь получилось по 21 бутылке на каждой стороне. Сомыч пересчитал бутылки своим обычным способом и подумал, что бутылок по-прежнему 60, а слуга только переставил их. Зая воспользовался оплошностью Сомыча и снова унес 4 бутылки, расставив остальные так, что на каждой стороне квадрата выходило опять по 21 бутылке. Так он повторял, пока было возможно. Спрашивается, сколько всего бутылок унёс Зая? (Каждый раз он обворовывал Сомыча ровно на 4 бутылки.)

Задачу решили: 65
всего попыток: 100
Задача опубликована: 10.10.11 08:00
Прислал: demiurgos img
Источник: Всероссийская олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Вписанный в окружность 2011-угольник разрезали на треугольники вдоль не пересекающихся внутри него диагоналей. Найдите наибольшее число прямоугольных треугольников.

Задачу решили: 294
всего попыток: 432
Задача опубликована: 02.11.11 08:00
Прислал: NikitaKozlov777 img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: pakko

У одного человека было 35 тысяч рублей. Перед смертью он сказал своей беременной жене: "Если родится мальчик, то он должен получить денег в 2 раза больше тебя, а если девочка то в 2 раза меньше тебя". У неё родилась двойня мальчик и девочка. Сколько рублей получит мальчик?

Задачу решили: 170
всего попыток: 194
Задача опубликована: 07.11.11 08:00
Прислала: Ulkas img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

Пусть запись a$b обозначает наименьшее из чисел a + b и 2b. Решите уравнение x$3=5$x.

Задачу решили: 141
всего попыток: 158
Задача опубликована: 11.11.11 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: xxxSERGEYxxx

Все 10 цифр десятичной системы счисления выписывают слева направо в таком порядке, что на каждом этапе (то есть после выписывания каждой из цифр) число, образованное уже выписанными цифрами оказывается составным. Какое максимальное число можно получить таким образом?

Задачу решили: 152
всего попыток: 211
Задача опубликована: 14.11.11 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Timur

Треугольник ABC - равнобедренный: AB = AC.

На стороне BC, длина которой равна 43, находится точка D. Дано:

AD = 17

CD = 13

Найдите, чему равен угол ADC в градусах.

+ 21
+ЗАДАЧА 661. Города (И.И. Богданов)
  
Задачу решили: 63
всего попыток: 85
Задача опубликована: 18.11.11 08:00
Прислал: admin img
Источник: Турнир городов
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

В некой стране 100 городов (города считайте точками на плоскости). В справочнике для каждой пары городов имеется запись, каково расстояние между ними (всего 4950 записей).
Пусть стерлись k записей, и известно, что в этой стране никакие три города не лежат на одной прямой. При каком наибольшем k всегда можно однозначно восстановить стершиеся записи?

+ 24
  
Задачу решили: 104
всего попыток: 140
Задача опубликована: 21.11.11 08:00
Прислал: admin img
Источник: Турнир городов
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Volga (Xxx Xxx)

Равнобокая трапеция, описанная около окружности, делится биссектрисой тупого угла на 2 части так, что отношение площадей - целое число. Найдите это число. 

Задачу решили: 88
всего попыток: 146
Задача опубликована: 25.11.11 08:00
Прислал: Volga img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Точка E находится на расстоянии 883·√2 и 37·√2 от вершин А и С квадрата ABCD соответственно, причем угол AEC - прямой, точка Е лежит слева от прямой CD. 

math664.jpg

Найдите расстояние от точки Е до вершины B.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.