Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
30
всего попыток:
38
В окружности с центром O построен правильный шестиугольник KOFPDL так, что его вершина D лежит на окружности. Из точки B, диаметрально противоположной точке D, проведены две хорды AB и BC, проходящие через вершины K и F шестиугольника соответственно. Найти отношение площади шестиугольника KOFPDL к площади четырехугольника ABCD.
Задачу решили:
30
всего попыток:
32
Равносторонний треугольник средними линиями разбит на 4 подобных треугольников,вершины которых обведены в кружочки. Ваня написал в кружочки различные цифры, а внутри каждого треугольника сумму или произведение трех цифр,относящихся к вершинам соответственно к нему. Затем стер цифры в кружочках, числа в треугольниках: 3, 13, 14, 15. Число 14- в среднем треугольнике. Найти наименьшее шестизначное число из стертых цифр.
Задачу решили:
22
всего попыток:
26
Если стороны треугольника равны a, b, c, и радиусы вписанной и описанной окружностей равны r и R, то выражение: Обозначим:
Задачу решили:
24
всего попыток:
67
Прямоугольный треугольник с гипотенузой длиной 37 имеет целочисленный периметр. Найти наименьшую целочисленную площадь.
Задачу решили:
30
всего попыток:
42
Найти минимальное натуральное число, которое имеет ровно 100 натуральных делителей, включая 100.
Задачу решили:
25
всего попыток:
35
Треугольник со стороной 19 и двумя прилежащими к ней углами, один из которых в два раза больше другого, имеет целочисленные стороны. Найти отношение суммы длин двух неизвестных сторон к длине известной стороны.
Задачу решили:
20
всего попыток:
60
Найдите количество натуральных чисел n, удовлетворяющих следующим условиям:
Задачу решили:
22
всего попыток:
121
Переставить 2 спички так, чтобы получилось наибольшее значение: Допускаются цифры только в таком виде:
Задачу решили:
34
всего попыток:
106
Как много равносторонних треугольников можно составить из 6 спичек?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|