img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 41
всего попыток: 64
Задача опубликована: 06.03.19 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: avilow (Николай Авилов)

Отличное от нуля число назовём оригинальным, если оно равно целой части произведения двухсот и арксинуса разности двух его некоторых цифр. Чему равна сумма всех оригинальных чисел?

Задачу решили: 27
всего попыток: 79
Задача опубликована: 10.04.19 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На какое наименьшее число частей можно разрезать поверхность правильного тетраэдра так, чтобы оклеить куб без пробелов и наложений?

Задачу решили: 31
всего попыток: 37
Задача опубликована: 19.05.21 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В равнобедренном треугольнике ABC с основанием |AC|=2, высотой |BD|=2+√3 вписаны квадраты KLMN и DPRQ.

Два квадрата в треугольнике

Найти отношение площадей квадратов KL MN и DPRQ.

Задачу решили: 25
всего попыток: 48
Задача опубликована: 30.06.21 08:00
Прислал: DOMASH img
Источник: Авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: логикаimg
Лучшее решение: mikev

Администратор сайта проводит конкурс на лучшую авторскую задачу. Условия таковы: участники анонимно предлагают одну свою задачу. После публикации задач все участники дают оценку каждой задаче, кроме своей. В конкурсе приняли участие 6 человек. Каждый участник за лучшую (по его мнению) задачу давал 5 баллов, за следующую 4 балла, и т.д., за пятую - 1 балл. По каждой задаче баллы суммировались - это рейтинг задачи. Оказалось, что все рейтинги различны.

А) Могли ли все рейтинги быть простыми числами?

Б) Могла ли сумма четырёх наибольших рейтингов быть в три раза больше суммы остальных рейтингов?

В) Какова минимальная сумма третьего и четвёртого по величине  рейтингов?

В качестве ответа на вопросы А), Б) вводите 1, если «Да» и 0, если «Нет»; на вопрос В) вводите сумму рейтингов.

Например, ответ 1029 означает: А) «Да», Б) «Нет», В) 29.

Задачу решили: 11
всего попыток: 16
Задача опубликована: 07.07.21 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Отрезки, соединяющие центры оснований правильной шестиугольной призмы и центры противоположных граней правильного октаэдра, совпадают. Боковое ребро призмы пересекает ребро октаэдра в его середине. Найти наибольшее отношение объёма общей части тел к объёму октаэдра.

Задачу решили: 9
всего попыток: 14
Задача опубликована: 30.07.21 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Отрезки, соединяющие центры оснований правильной треугольной призмы и центры противоположных граней правильного октаэдра, совпадают. Боковое ребро призмы пересекает ребро октаэдра в его середине. Найти наибольшее отношение объёма общей части тел к объёму октаэдра.

Задачу решили: 12
всего попыток: 17
Задача опубликована: 02.08.21 08:00
Прислал: DOMASH img
Источник: Авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Высота правильной треугольной пирамиды соединяет центры двух противоположных граней правильного октаэдра, а боковое ребро пирамиды проходит через центр третьей грани октаэдра. Найти наименьшее отношение объёмов пирамиды и октаэдра.

Задачу решили: 30
всего попыток: 35
Задача опубликована: 08.09.21 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Середины противоположных сторон жёлтого правильного шестиугольника соединены непрерывной ломаной со звеньями от 1 до 20 и углами между ними ∏/3, а середины противоположных сторон синего правильного шестиугольника соединены аналогичной ломаной со звеньями от 1 до 21. Найти отношение стороны желтого шестиугольника к стороне синего.

Два шестиугольника

Задачу решили: 4
всего попыток: 7
Задача опубликована: 15.11.21 08:00
Прислал: DOMASH img
Источник: Авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Поверхность правильного октаэдра разрезать на несколько частей, чтобы ими можно было оклеить без просветов и наложений как два равных правильных тетраэдра, так и три равных правильных октаэдра. На какое минимальное число частей можно разрезать октаэдр?

Задачу решили: 2
всего попыток: 4
Задача опубликована: 24.11.21 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Поверхность правильного тетраэдра разрезать на части и сложить из них правильный  октаэдр без просветов и наложений. На какое минимальное число частей можно разрезать тетраэдр?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.