img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: Kf_GoldFish добавил комментарий к решению задачи "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 21
всего попыток: 21
Задача опубликована: 05.06.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Сложите из 100 экземпляров фигурок

1 фигурка

в 10 раз большую фигуру

100 фигурок

Фигурки можно поворачивать и переворачивать.

Задачу решили: 10
всего попыток: 14
Задача опубликована: 20.08.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Рассмотрим следующие 6 свободных полиомино:

Общие части полиомино

Свободное, или двустороннее полиомино – сколько бы его ни сдвигать, поворачивать и переворачивать, считается, что оно одно и тот же. В дальнейшем говорится только о таких.

Определение. Если полиомино B можно построить путём добавления какого-то количества квадратиков (0 или больше) к полиомино A, то будем говорить, что A является подполиомино B. Нужно построить таблицу из 6x6=36 символов – НУЛЕЙ и ЕДИНИЦ – таким образом:
В x-м символе y-й строки нужно записать ЕДИНИЦУ, если существует подполиомино y-го полиомино, которое также является подполиомино x-го полиомино, но не является подполиомино ни одного из остальных полиомино.
В противном случае нужно записать в этой позиции НОЛЬ.

Введите в ответ все эти символы подряд, строку за строкой. Нумерация строк идёт сверху вниз, а символов в строке – слева направо. Номера полиомино показаны на их изображениях.

Задачу решили: 17
всего попыток: 62
Задача опубликована: 06.10.21 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: bbny

На шахматной доске n на n расставлены n2 ферзей n различных цветов, по n ферзей каждого цвета. Каждый ферзь стоит на отдельной клетке, и ни один ферзь не стоит ни на той же горизонтали, ни на той же вертикали, ни на той же диагонали (большой или маленькой) что другой ферзь того же цвета. На рисунке показан пример такой расстановки ферзей для n=5:

Ферзи

Найдите 4 наименьших натуральных числа n, для которых это возможно. Укажите в ответе их сумму.

Задачу решили: 8
всего попыток: 19
Задача опубликована: 11.02.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Из бумаги склеили правильный тетраэдр. Затем на его поверхности последовательно сделали n разрезов в форме отрезков прямых, в результате чего она распалась на m частей, которыми удалось оклеить без просветов и наложений 3 одинаковых правильных тетраэдра, не имеющих общих точек. Найдите минимально возможное значение 100m + n.

Замечание: разрезания разрешено чередовать с развёртыванием исходного тетраэдра.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.