Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
47
Из вершины А пямоугольника ABCD провели трисектрисы (2 луча,делящие угол А на 3 равные части). Точки K и L пересечения трисектрис соответственно со сторонами ВС и CD, причем KC=LD. Найти отношение периметра прямоугольника к длине одного из отрезков KC или LD.
Задачу решили:
51
всего попыток:
72
На клетчатой бумаге нарисован треугольник АВС так, что вершины лежат в точках с координатами А(1,2); В(3,4); С(8,1). Имея только линейку без шкалы делений и карандаш проведете биссектрису АD угла ВАС одним отрезком. Точка D лежит на точке клетчатой бумаги, ближайшей к стороне ВС. Найти координаты точки D(x,y). В качестве ответа введите произведение координат x×y.
Задачу решили:
21
всего попыток:
42
Остроугольный равнобедренный треугольник АВС (АС - основание) с целочисленными сторонами наименьшего периметра такой, что проекции боковой стороны ВС на прямые, проходящие через С, под внешними к треугольнику углами к стороне АС, равными соответственно углу АВС и полтора угла АВС, являются целочисленными. Найти периметр данного треугольника.
Задачу решили:
30
всего попыток:
33
На диагонали АС квадрата АВСD построили прямоугольник APQC (AP=AB) так,что вершина В оказалась внутри прямоугольника. Прямая PB пересекает сторону DQ треугольникa DPQ в точке К и делит его на два треугольника DPK и PQK, у которых площади S1 и S2 соответственно. Найти (|S1|2-|S2|2)/(|S1|*|S2|).
Задачу решили:
36
всего попыток:
45
В треугольнике АВС с углами ВАС=30°, АСВ=105° проведена медиана BD. Найти угол ABD в градусах.
Задачу решили:
32
всего попыток:
41
В правильном десятиугольнике из одной вершины проведены диагонали, которые разбивают его на восемь треугольников. Известно, что отношение площади десятиугольника к площади некоторых треугольников выражается целым числом. Найти наибольшее значение этого отношения.
Задачу решили:
20
всего попыток:
56
На плоскости отмечены N точек. Любые три из них образуют треугольник, величины углов которого в градусах выражаются натуральными числами. При каком наибольшем N это возможно?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|