Лента событий:
MikeNik
решил задачу
"Три точки на прямой"
(Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
25
всего попыток:
26
На противоположных берегах реки напротив друг друга растут две пальмы. Высота одной из них 10 м, высота другой - 15 м, расстояние между основаниями пальм 25 м. На верхушке каждой пальмы сидит птица. Внезапно птицы замечают рыбу, выплывшую на поверхности реки между пальмами. Птицы бросаются к рыбе и достигают ее одновременно. На каком расстоянии от основания меньшей пальмы выплыла рыба? (Птицы летят к рыбе по прямым с одинаковой скоростью).
Задачу решили:
21
всего попыток:
23
В треугольнике один из углов на 120° больше другого. Найти отношение длины высоты к длине биссектрисы, опущенных из вершины третьего угла.
Задачу решили:
22
всего попыток:
30
Чевиана из вершины прямого угла треугольника АВС(угол С-прямой) СК равен катету АС и делит биссектрису из вершины В в точке пересечения пополам. Найти угол В в градусах.
Задачу решили:
24
всего попыток:
33
Какое максимальное количество простых чисел можно записать, использовав каждую из десяти цифр от 0 до 9 ровно по одному разу?
Задачу решили:
21
всего попыток:
28
Найти сумму натуральных чисел n, которые можно представить в виде суммы n=a2+b2, где a — минимальный делитель n, отличный от 1, и b — какой-то делитель n.
Задачу решили:
9
всего попыток:
13
В бумажном квадрате 7х7 на рисунке вырезан меньший квадрат так, что его вершины находятся в узлах решетки. Разрежьте эту фигуру на несколько частей и переложите их так, чтобы получился квадрат 7х7 с квадратной дырой в центре, причем стороны квадратной дыры были параллельны сторонам исходного квадрата. Разрезы можно делать любой формы. В ответе укажите наименьшее число частей разрезания.
Задачу решили:
22
всего попыток:
23
(√15 + √21 + √25 + √35)/(√3 + √7 + √20)=(√a + √b)/2, где a и b - натуральные числа. Найдите их сумму.
Задачу решили:
21
всего попыток:
28
Взаимно простые целые числа x, y и z удовлетворяют следующим условиям: x2+y2+z2=2xy+2yz+2zx 0<z<y<x<12345 Найти наибольшее значение x.
Задачу решили:
19
всего попыток:
21
В числовом ребусе
Задачу решили:
12
всего попыток:
14
В целочисленном параллелограмме пересечения биссектрис внутренних углов определяют вершины четырёхугольника, ни одна точка которого не находится вне параллелограмма. Сколько существует таких параллелограммов, если известно, что одна из его сторон равна 135, а углы кратны 9 градусам?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|