Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
738
всего попыток:
1633
У основателя правящей династии, царя Ивана Первого, было четыре сына. У 10 из его потомков (по мужской линии) было по три сына, у 10 — по два, у 10 — по одному, а у остальных рождались только девочки или вообще детей не было. Сколько всего потомков (по мужской линии) было у Ивана Первого?
Задачу решили:
256
всего попыток:
940
Сколькими способами можно раскрасить грани одинаковых кубиков шестью красками (каждая грань одного цвета, а все грани разных цветов) так, чтобы никакие два из получившихся раскрашенных кубиков не были одинаковыми, т.е. не переходили один в другой ни при каких вращениях?
Задачу решили:
639
всего попыток:
1683
На приёме каждый из 11 послов различных государств хочет поздороваться за руку с наибольшим числом коллег, но по правилам этикета все послы должны сделать по одинаковому числу рукопожатий. Сколько рукопожатий сможет сделать каждый посол, если послы государств Лилипутия и Блефуску не здороваются друг с другом?
Задачу решили:
271
всего попыток:
611
Проволочный каркас куба с ребром длиной 10 см вымазан мёдом. Сидящая в вершине муха хочет проползти по всем сладким рёбрам, чтобы съесть весь мёд. Какое минимальное количество сантиметров её придётся для этого преодолеть?
Задачу решили:
438
всего попыток:
482
Площадь крышки коробки равна 120 см2, её передней стенки — 80 см2, а боковой стенки — 96 см2. Сколько см3 составляет объём коробки?
Задачу решили:
179
всего попыток:
419
Медиана, проведённая к одной из боковых сторон равнобедренного треугольника, делит его периметр на две части, длины которых равны 12 и 21. Найдите длину основания. (Если ответов несколько, введите их произведение.)
Задачу решили:
135
всего попыток:
292
Сколько существует попарно различных треугольников с целочисленными сторонами и периметром 40?
Задачу решили:
110
всего попыток:
160
Сколькими способами можно расставить в ряд все десять цифр от 0 до 9 включительно так, чтобы сумма любых трёх из них, идущих подряд, не превышала 12?
Задачу решили:
176
всего попыток:
288
На шахматной доске 8×8 проведена прямая линия, не проходящая через углы клеток. Какое наибольшее число клеток она может пересекать?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|