Лента событий:
fortpost решил задачу "Плохое место" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
370
всего попыток:
889
Перед двумя игроками кучка из 111 спичек. Каждый из них своим ходом берёт из неё от 1 до 11 спичек — любое число на своё усмотрение. Ходы делаются по очереди, а выигрывает тот, кто возьмёт последнюю спичку. Сколько спичек должен взять первый игрок в начале игры, чтобы обеспечить себе победу при любых ходах второго игрока?
Задачу решили:
203
всего попыток:
774
Пробирка, содержащая посев бактерий, затерялась среди 1000 других таких же пробирок с похожей, но стерильной жидкостью. В лаборатории есть 10 мышей, у которых признаки заболевания появляются не позже, чем через 24 часа после заражения этими бактериями. Нужно как можно быстрее найти пробирку с бактериями. Сколько часов потребуется для этого? (Чтобы заразить одну мышь, достаточно микроскопической дозы посева.)
Задачу решили:
219
всего попыток:
352
– Все-таки математики — любопытный народ, – сказал полицейский комиссар своей жене. – Представь себе, на столе в отеле стояли наполненные стаканы. Только в одном из них был яд. Лаборатория могла проверить все стаканы, но проверка стоит времени и денег. Нам на помощь прислали профессора математики. Он подсчитал стаканы, взял первый из них, и мы проверили его первым. Я спросил его, не растратили ли мы одну проверку впустую, но он сказал, что это составляет часть оптимальной процедуры.
Задачу решили:
84
всего попыток:
567
Перед Вами 50 одинаковых на вид кубиков — 25 берёзовых и 25 сосновых. Любой сосновый кубик на полграмма легче любого берёзового. Ваша задача: используя чашечные весы без гирь, отложить две разного веса кучки из одинакового числа кубиков. Какое наименьшее число взвешиваний Вам потребуется?
Задачу решили:
24
всего попыток:
49
Двое играют в следующую игру. У них есть доска 30х20 и 2 коробочки фишек - в одной 600 белых, в другой 400 чёрных. Ход состоит в том, что первый игрок выбирает коробочку, содержащую фишки, а второй берёт из неё фишку и ставит на любую свободную клетку доски. Игра заканчивается, когда все клетки заняты. Какой наибольший квадрат, во всех клетках которого стоят фишки одного цвета, может получить второй, независимо от игры первого? (В ответе укажите длину стороны этого квадрата).
Задачу решили:
28
всего попыток:
118
На листке первый игрок записал число 0. Затем по очереди справа к выражению второй пишет знак плюс или минус, а первый одно из натуральных чисел от 1 до 2015. Оба делают по 2015 ходов, причем первый записывает каждое из чисел от 1 до 2015 ровно по одному разу. В конце игры первый игрок получает выигрыш, равный модулю алгебраической суммы, написанной на листке. Какой наибольший выигрыш он может себе гарантировать?
Задачу решили:
47
всего попыток:
95
Ярослав, Костя и Настя играют в быстрые шахматы. В одно время играют двое, проигравшего заменяет тот, кто не играл. Ярослав выиграл 10 раз, Костя - 21. Какое минимаьное число раз могли мальчики сыграть между собой?
Задачу решили:
32
всего попыток:
101
На доске 5х5 стоят 25 шашек реверси (с одной стороны белые, с другой - черные) белой стороной вверх. За один ход можно перевернуть любую шашку и все соседние по вертикали и горизонтали. За какое минимальное число ходов можно перевернуть шашки так, чтобы одна шашка была черной стороной вверх?
Задачу решили:
25
всего попыток:
82
На ступенчатом квадрате построен замкнутый маршрут шахматного коня, состоящий из 14 прыжков. Постройте здесь замкнутый маршрут, содержащий максимально возможное число прыжков коня. Дважды прыгать в одну клетку нельзя. Начинать можно с любой клетки. В ответе укажите число прыжков шахматного коня в этом маршруте.
Задачу решили:
23
всего попыток:
106
На ступенчатой клеточной доске показан замкнутый маршрут козлотура, состоящий из 6-и прыжков: Найдите замкнутый маршрут козлотура на этой же доске, содержащий максимально возможное число прыжков. Дважды прыгать в одну клетку нельзя. В ответе укажите число прыжков козлотура в этом маршруте.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|