Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
63
всего попыток:
96
В прямоугольный треугольник, длины сторон которого составляют арифметическую прогрессию, вписана окружность, а в неё – ещё два прямоугольных треугольника. Один из этих треугольников подобен исходному («большому»), другой – равнобедренный. Площадь исходного треугольника – S1, вписанных – S2 и S3. Найдите значение (S2+S3)/S1.
Задачу решили:
42
всего попыток:
62
Найдите наибольшее натуральное k такое, что любые положительные числа, удовлетворяющие неравенству a2 > bc, удовлетворяют также неравенству (a2–bc)2 > k(b2–ca)(c2–ab).
Задачу решили:
51
всего попыток:
85
В ящике находятся 2013 черных и 2014 белых шаров. Из ящика извлекаются наугад два шара. Если их цвет оказывается одинаковым, то в ящик вместо вынутой пары опускается черный шар, если же цвета различные, то белый шар. Так происходит до тех пор, пока в ящике не останется один шар. Какого он цвета? Введите 1,если шар черный, и 2 –если шар белый.
Задачу решили:
45
всего попыток:
153
На доске 100×100 расставлены числа 1, 2 и 3 так, что в каждом прямоугольнике 1×3 встречаются все три числа, а в углах стоят единицы. Если эту доску раскрасить в шахматном порядке, то какое максимальное количество белых клеток будут единицами?
Задачу решили:
103
всего попыток:
129
Определите 3 последние цифры числа 79999.
Задачу решили:
50
всего попыток:
85
Среди 10-элементных подмножеств множества A ={1, 2, ..., 30} найдите количество тех, в которых разность любых двух элементов не меньше 3.
Задачу решили:
33
всего попыток:
75
У менеджера 10 поручений. Выполнять их надо по одному в день, но в определенном порядке. Поручения занумерованы числами от 1 до 10. На поручения с 1 по 5 наложены ограничения. В первый и шестой день нельзя выполнять первое поручение, во второй и седьмой день нельзя выполнять второе поручение и т. д. в пятый и десятый день нельзя выполнять пятое поручение. 5 поручений с 6 -го по 10 можно выполнять в любой из десяти дней. Hайти количество способов выполнить поручения.
Задачу решили:
64
всего попыток:
83
Найти сумму всех натуральных п таких, что справедливо следующее равенство:
Задачу решили:
62
всего попыток:
108
Для действительных чисел x, y выполнено условие |x + y + 1| + |x + 1| + |y + 3| = 3. Обозначим за M наибольшее, а за m наименьшее значение, которое может принимать выражение x2 + y2. Найдите M + 2m.
Задачу решили:
54
всего попыток:
74
Известно, что действительные числа a и b удовлетворяют уравнению
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|