img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: DOMASH предложил задачу "Дырявый квадрат-4" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 65
всего попыток: 94
Задача опубликована: 12.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: MMM (MMM MMM)

Найти две последние цифры значения выражения 21-22+23-24+25-26+...+22013.

Задачу решили: 44
всего попыток: 72
Задача опубликована: 23.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Строго монотонная положительная функция f(x): N→N (N - множество натуральных чисел), при этом f(f(x))=3x. Найдите f(2015)+f(2014)+f(2013)-3f(2012).

Задачу решили: 60
всего попыток: 78
Задача опубликована: 30.01.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Пусть a1=1, a2=2, a3=3 и an+3=(an+2+an+1+an)/3 для n>0. Найти предел последовательности.

Задачу решили: 62
всего попыток: 81
Задача опубликована: 02.02.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: levvol

Многочлен от одной переменной p(x) с целыми положительными коэффициентами такой, что p(1)=12, а p(12)=2080. Найти p(10).

Задачу решили: 30
всего попыток: 215
Задача опубликована: 04.02.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: kvanted

Найдите количество целых чисел 1 ≤ n ≤ 10000, которые могут быть представлены в виде n=[2x]×[3x], где x - действительное число, [x] - целая часть числа x. 

Задачу решили: 40
всего попыток: 242
Задача опубликована: 09.02.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: levvol

В школе учится 100 учеников и для каждого имеется свой шкафчик. Все школьники имеют свои номера, соответствующие номерам шкафчиков. Изначально все шкафчики закрыты. Школьники приходят в порядке нумерации.

Когда приходит школьник 1, то он открывает все шкафчики.

Школьник 2 закрывает каждый 2-й шкафчик.

Школьник 3 изменяет состояние каждого 3-го шкафчика: если открыт, то закрывает, если закрыт, то открывает.

Школьник 4 изменяет состояние каждого 4-го шкафчика. И т.д. до 100-го школьника. 

Если какой-то школьник не приходит, то никто не выполняет за него указанную процедуру.

В один из дней все шкафчики были закрыты, кроме 1-го. Сколько в этот день отсутствовало школьников?

Задачу решили: 35
всего попыток: 56
Задача опубликована: 13.02.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Рассмотрим все кубические многочлены p(x)=x3+ax2+bx+c с действительными коэффициентами. Найдите минимальное возможное значение max |p(x)|  среди всех таких многочленов для всех -1 ≤ x ≤ 1.

Задачу решили: 23
всего попыток: 74
Задача опубликована: 23.02.15 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: kvanted

Найдите наибольшее натуральное число, которое обладает таким свойством: часть числа, состоящая из первых k цифр исходного числа делится на k для всех k=1, 2, ..., n, (n = количество цифр этого числа. Число записано без ведущих нулей. Цифры могут повторяться).

Задачу решили: 45
всего попыток: 124
Задача опубликована: 25.02.15 08:00
Прислал: levvol img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg

Дана неубывающая положительная  функция F(x): R->R (R-множество рациональных  чисел),  определенная на интервале  [0,1],   удовлетворяющая  двум условиям:

(a)        F(x/3)=F(x)/2

(b)        F(1-x)=1-F(x)

Найдите F(1/13). 

Задачу решили: 38
всего попыток: 74
Задача опубликована: 02.03.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

Пусть p(x)=x2015+2015 и a(x) - остаток от деления p(x) на x8-x6+x4-x2+1, а b(x) - остаток от деления p(x) на (x+1)3. Найти (b(1)+1)/(1-a(-1)).

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.