Лента событий:
DOMASH предложил задачу "Дырявый квадрат-4" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
48
всего попыток:
58
Остаток от деления x2015 на x2-x-1 равен ax+b. Чему равно a2-ab-b2.
Задачу решили:
37
всего попыток:
85
Рассмотрим все функция f такие, что Найти наименьшее положительное число, являющееся периодом для всех f,
Задачу решили:
38
всего попыток:
62
При представлении числа N в виде N=±1±2±3±...±100 можно в любом месте выбирать знак "плюс" или "минус". Сколько чисел можно представить в таком виде?
Задачу решили:
28
всего попыток:
97
Найти наименьший период для функций, удовлетворяющих условию:
Задачу решили:
49
всего попыток:
94
Определите количество различных значений в конечной последовательности чисел [12/2015], [22/2015], [32/2015], ..., [20152/2015]
Задачу решили:
46
всего попыток:
66
В прямоугольник ABCD (|AB|=36, |BC|=60) вписан прямоугольник KLMN (точки K и L расположены соответственно на сторонах AB и BC), при это |BL|<|LC|. Найти максимально возможное значение |BL|.
Задачу решили:
46
всего попыток:
63
Для целых положительных чисел n определена функция f(n)=n2+n+1. Найдите наибольшее n такое, что 2015*f(12)*f(22)*...*f(n2)≥(f(1)*f(2)*...f(n))2.
Задачу решили:
39
всего попыток:
88
Найти сумму всех Fn/2015n для всех натуральных n. F0=0, F1=1, Fn=Fn-1+Fn-2.
Задачу решили:
58
всего попыток:
127
В окружность вписан равносторонний треугольник А1В1С1 с площадью S1. У второго равностороннего треугольника А2В2С2 с площадью S2 вершины А2 и С2 также лежат на окружности, а В2 – середина отрезка А1С1 (см. рисунок). Учитывая, что А1В1||А2В2, найдите S1/S2. В ответе укажите значение [10•S1/S2].
Задачу решили:
68
всего попыток:
82
[n*lg2]+[n*lg5]=2010. Найти n. ([x] - целая часть числа x.)
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|