Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
50
всего попыток:
80
Пусть f(x) многочлен такой, что f(f(x))-x2=xf(x). Найти f(-1000).
Задачу решили:
45
всего попыток:
58
В городе для ограничения транспортного потока для каждой частной автомашины устанавливаются два дня недели, в которые она не может выезжать на улицы города. Большой семье требуется каждый день иметь в распоряжении не менее 10 машин. Каким наименьшим количеством машин может обойтись семья, если ее члены могут сами выбирать запрещенные дни для своих автомобилей?
Задачу решили:
37
всего попыток:
45
В городе в целях ограничения транспортного потока для каждой частной автомашины устанавливаются один день в неделю, в который она не может выезжать на улицы города. Состоятельная семья из 10 человек подкупила полицию, и для каждой машины они называют 2 дня, один из которых полиция выбирает в качестве невыездного дня. Какое наименьшее количество машин нужно купить семье, чтобы каждый день каждый член семьи мог самостоятельно ездить, если утверждение невыездных дней для автомобилей идет последовательно?
Задачу решили:
41
всего попыток:
45
Найти сумму всех α таких, что существует функция f: R → R, отличная от константы, такая, что f(α(x + y)) = f(x) + f(y) ?
Задачу решили:
40
всего попыток:
61
Найти количество десятизначных чисел, которые делятся на 11111 и имеют в записи все различные цифры.
Задачу решили:
35
всего попыток:
46
Куб со стороной равной 2016 см разбит перегородками на кубики со сторонами 1 см. Какое минимальное число перегородок между единичными кубиками нужно удалить, чтобы из каждого кубика можно было добраться до границы куба?
Задачу решили:
57
всего попыток:
64
На столе лежали две колоды, по 36 карт в каждой. Первую колоду перетасовали и положили на вторую. Затем для каждой карты первой колоды посчитали количество карт между ней и такой же картой второй колоды (т. е. сколько карт между семерками червей, между дамами пик, и т. д.). Чему равна сумма 36 полученных чисел?
Задачу решили:
30
всего попыток:
31
Найти количество n-значных чисел M и N таких, что все цифры M - четные, все цифры N - нечетные, каждая цифра от 0 до 9 встречается в десятичной записи M или N хотя бы один раз, и M делится на N?
Задачу решили:
40
всего попыток:
46
Длины сторон некоторого треугольника и диаметр вписанной в него окружности являются четырьмя натуральными числами и последовательными членами арифметической прогрессии. Максимальная длина стороны треугольника не превосходит 26. Найдите количество всех таких треугольников.
Задачу решили:
33
всего попыток:
46
Пусть f(x) = x2 + ax + bcos(x). Найдите количество целых значений параметров a, при которых уравнения f(x) = 0 и f(f(x)) = 0 имеют совпадающие непустые множества действительных корней.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|