Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
48
всего попыток:
148
В треугольнике АВС проведены прямые параллельно сторонам АВ, ВС, СА, каждая из которых делит площадь треугольника пополам. При пересечении этих прямых внутри треугольника АВС образуется треугольник DEF. Найти отношение площади треугольника АВС к площади треугольника DEF (округлить число до ближайшего целого).
Задачу решили:
22
всего попыток:
125
Сколько существует способов разломать плитку шоколада размера 6x4 на части 2x1?
Задачу решили:
45
всего попыток:
67
В треугольнике АВС внутри взята произвольно точка О,через которую проведены три прямые, паралельно сторонам АВ, ВС, АС. При этом треугольник разделился на 6 частей (3 треугольника и 3 паралеллограмма). Известно,что площади этих треугольников 25, 36 и 49. Найти общую площадь 3-х паралеллограммов.
Задачу решили:
43
всего попыток:
85
Числа от 1 до 100 разделены на множества так, что в каждом множестве любое число не делится на другие числа множества. Какое минимальное число таких множеств возможно?
Задачу решили:
59
всего попыток:
70
Натуральное число N имеет ровно 10 делителей, 2N - ровно 15 делителей, 3N - ровно 20 делителей. Сколько делителей у числа 4N?
Задачу решили:
51
всего попыток:
60
На стороне 12-угольника построен квадрат. Найдите отмеченный угол в градусах.
Задачу решили:
45
всего попыток:
59
Элементы квадратной матрицы 3 на 3 - различные действительные числа. Произведения трёх элементов каждой строки, каждого столбца и каждой большой диагонали равны одному и тому же натуральному числу. Какое минимально возможное значение этого натурального числа?
Задачу решили:
28
всего попыток:
66
В русском алфавите 33 буквы. Посчитайте сколько можно составить слов из 6 букв таких, что в словах используются только разные буквы, и не встречаются буквы, которые стоят в алфавите рядом. Например, слово "ОГУРЕЦ" удовлетворяет условию, а "СВЁКЛА" - нет
Задачу решили:
44
всего попыток:
103
Найти количество целочисленных пар (x, y) таких, что 0 ≤ y ≤ 2017 и x2+y2+(x+y)2=y3.
Задачу решили:
24
всего попыток:
42
Найти количество пар натуральных чисел (m, n) m < n ≤ 100 для которых есть по крайней мере одно натуральное число k (m < k < n) которое делится на любой общий делитель m и n.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|