Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
41
всего попыток:
58
Функция f(n) такая, что f(n)=1 при n<0 и f(n)=1-f(n-1)f(n-3)f(n-4) при n≥0. Найдите сумму значений функции от 0 до 2018.
Задачу решили:
52
всего попыток:
66
Легко вычислить 03+13+23=32, 13+23+33=62. Найдите следующие три последовательные натуральные числа, которые обладают таким же свойством. В ответе укажите первое из них.
Задачу решили:
30
всего попыток:
37
В остроугольном равнобедренном треугольнике АВС (АВ=ВС) проведена высота CD. На стороне ВС построен прямоугольный треугольник ВСЕ снаружи треугольника АВС так,что ВЕllAC, угол ВСЕ=90°. Отрезок АЕ пересекает высоту CD в точке F. Отрезок CF 4 раза меньше боковой стороны исходного треугольника. Найти угол в градусах при основании треугольника АВС.
Задачу решили:
57
всего попыток:
75
Между столбами А1 и А2 натянут провод длинной 48 м. Воробей вначале сел в середину А3 провода А1А2, затем прыгнул в середину А4 отрезка А2А3, затем прыгнул в середину А5 отрезка А3А4, и т.д. Прыгая так бесконечно долго, воробей стремится к некоторой точке В. Найдите расстояние А1В.
Задачу решили:
35
всего попыток:
42
Фигура "Вертушка" состоит из квадрата и четырех его половинок. На рисунке слева приведено разрезание вертушки на пять частей, на рисунке справа показано, как из этих частей сложить квадрат. Найдите в градусах величину острого угла с вершиной в точке А.
Задачу решили:
44
всего попыток:
47
Из вершины А пямоугольника ABCD провели трисектрисы (2 луча,делящие угол А на 3 равные части). Точки K и L пересечения трисектрис соответственно со сторонами ВС и CD, причем KC=LD. Найти отношение периметра прямоугольника к длине одного из отрезков KC или LD.
Задачу решили:
25
всего попыток:
31
Построили прямоугольный треугольник OA0A1 (угол OA0A1 - прямой). Затем построили прямоугольный треугольник OA1A2 (угол OA1A2 - прямой), точки A0 и A2 находятся с разных сторон отрезка OA1, длины отрезков: |OA1|² = |OA0| • |OA2|. Затем построили прямоугольный треугольник OA2A3 (угол OA2A3 - прямой), точки A1 и A3 находятся на разных сторонах отрезка OA2, длины отрезков: |OA2|² = |OA1| • |OA3|. И так далее, несколько раз.
Сумма углов A0OA1 + A1OA2 + A2OA3 + . . . = 360°
Оказалось, что гипотенуза последнего треугольника лежит на отрезке OA0 (содержит его) и ровно в k раз длинее него, где k - целое число.
Найдите сумму всевозможных значений k.
Задачу решили:
47
всего попыток:
80
Сколько квадратов со стороной 4 можно поместить без наложений в равносторонний треугольник со стороной 13?
Задачу решили:
41
всего попыток:
60
Если сложить 10 правильных пятиугольников, то можно получить правильный десятиугольник. Точно так же из n правильных m-угольников (m≥5) сложили все возможные правильные n-угольники. Найдите сумму всех различных возможных m.
Задачу решили:
49
всего попыток:
54
Вершины трех квадратов ОА1В1С1, ОА2В2С2 и ОА3В3С3 обозначены по часовой стрелке (см. рис). Найдите площадь треугольника В1В2В3, если площадь треугольника А1А2А3 равна 21.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|