img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 56
всего попыток: 64
Задача опубликована: 25.03.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: MMM (MMM MMM)

x=1+\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{3}}+...++\frac{1}{\sqrt{2019}}

Вычислите целую часть x.

Задачу решили: 48
всего попыток: 63
Задача опубликована: 27.03.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Трехзначное число равно сумме его первой цифры, квадрата второй цифры и куба третьей цифры. Найдите все трехзначные числа, обладающие таким свойством. В ответе укажите их сумму.

Задачу решили: 36
всего попыток: 54
Задача опубликована: 29.03.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Куб распилили по 3-м плоскостям XOY, XOZ, YOZ и получили 8 брусков, у семи из которых известны площади поверхностей 148, 126, 88, 72, 58, 46, 28. Найти длину ребра куба.

Задачу решили: 37
всего попыток: 53
Задача опубликована: 01.04.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Плоская металлическая фигура имеет форму трапеции. Докажите, что её центр тяжести лежит на отрезке, соединяющем середины оснований трапеции. Выясните, в каком отношении (меньшее число к большему) центр тяжести трапеции делит этот отрезок, если основания трапеции равны 1 и 2.

Задачу решили: 23
всего попыток: 31
Задача опубликована: 03.04.19 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

В квадрате ABCD помечены середины всех 4-х его сторон. Какое минимальное количество линий нужно провести с помощью линейки без делений, чтобы разделить квадрат на 5 равновеликих частей?

Задачу решили: 27
всего попыток: 79
Задача опубликована: 10.04.19 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

На какое наименьшее число частей можно разрезать поверхность правильного тетраэдра так, чтобы оклеить куб без пробелов и наложений?

Задачу решили: 19
всего попыток: 36
Задача опубликована: 19.04.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: TALMON (Тальмон Сильвер)

Сколько различных прямых можно провести через все пары точек, расположенных в узлах квадратной решетки 100х100?

Задачу решили: 4
всего попыток: 53
Задача опубликована: 26.04.19 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: геометрияimg
Лучшее решение: zmerch

Дан квадрат ABCD. Какое минимальное количество прямых нужно провести с помощью линейки без делений, чтобы разделить его на 5 равновеликих частей?

Задачу решили: 17
всего попыток: 45
Задача опубликована: 01.05.19 08:00
Прислал: admin img
Источник: По мотивам задачи Н. Авилова "Книга"
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Marutand

В ряду стоят несколько книг с разным количеством страниц. Каждая книга состоит из одной или нескольких глав и сшита из 12 одинаковых тетрадей, каждая тетрадь - из нескольких двойных листов, вложенных друг в друга. Если в главе более одной тетради, то все они вложены друг в друга. Первой из вложенных друг в друга тетрадей считается та, в которую вложены все остальные и т.д. Все страницы каждой книги пронумерованы, начиная с 1. Сумма номеров четырех страниц одного из двойных листов четвертой тетради каждой книги равна 338.

Найдите максимально возможное общее колличество страниц во всех книгах ряда.

Задачу решили: 31
всего попыток: 40
Задача опубликована: 03.05.19 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

На сторонах треугольника АВС отмечены середины сторон точками А1В1С1 (соответственно против вершин АВС). Также произвольно отмечены точки К на отрезке А1В, М на отрезке АВ1. Далее проведены отрезки А1М, В1К, С1К, С1М. Обозначив точку пересечения отрезков А1М и В1К через О,видно,что треугольник АВС разделен на 2 четырехугольника и 4 треугольника. Найти разность между суммарной площадью четырехугольников и суммарной площадью треугольников, если известно,что площадь четырехугольника ОА1СВ1=15, площадь треугольника АВС=48.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.