img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: badfomka решил задачу "Календарь будущего" (Информатика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 36
всего попыток: 58
Задача опубликована: 06.05.19 08:00
Прислал: admin img
Источник: Элементы большой науки: elementy.ru
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгоритмыimg
Лучшее решение: Marutand

Есть три стержня: A, B и C. На стержень A надеты 8 колец (дисков), наверху самое маленькое, каждое следующее больше предыдущего, а внизу самое большое. Два других стержня пусты. Необходимо перенести все кольца со стержня A на стержень C, пользуясь стержнем B как вспомогательным. В итоге кольца на стержне C должны быть в том же порядке, в котором они исходно находились на стержне A. Брать за один ход несколько колец нельзя. Кроме того, никогда нельзя класть большее кольцо поверх меньшего.

Запрещается переносить кольца между стержнями A и C напрямую.

За один ход перенести кольцо можно только либо с A на B (или обратно с B на A), либо с B на C (или обратно). Сколько ходов потребуется для переноса башни из 8 колец с A на C?

Задачу решили: 26
всего попыток: 46
Задача опубликована: 10.06.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Правильный шестиугольник со стороной 6, разбит на единичные треугольники, и отмечены вершины всех единичных треугольников.

Шестиугольники на точечной решетке

Найти число всех правильных шестиугольников, которые можно построить на заданных точках. Три из них изображены на рисунке.

Задачу решили: 50
всего попыток: 65
Задача опубликована: 12.06.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: zmerch

Ковер Серпинского представляет собой бесконечное разбиение квадрата на меньшие квадраты.

Ковер Серпинского

Построение выполняется поэтапно: на первом шаге исходный квадрат разбивается на девять равных квадратов и центральный квадрат закрашивается; на втором этапе каждый из оставшихся незакрашенных квадратов разбивается на девять меньших квадратов и центральный квадрат закрашивается, и так до бесконечности. На рисунке показаны разбиения квадрата, которые получаются после первых трех шагов. Сколько закрашенных и незакрашенных квадратов вместе получается на пятом шаге построения ковра Серпинского? 

Задачу решили: 52
всего попыток: 72
Задача опубликована: 17.06.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

От центра окружности на расстоянии 5 проведена хорда. В оба  получившихся сегмента вписаны квадраты, так что у обоих одна сторона лежит на хорде, а еще две точки на окружности. Найти разность длины сторон большего и меньшего квадрата.

+ 4
+ЗАДАЧА 1853. 11 монет (О. Подлипский, И. Богданов)
  
Задачу решили: 42
всего попыток: 68
Задача опубликована: 21.06.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Имеется 11 монет с различными целыми весами. Сумарный вес любых семи монет больше суммарного веса оставшихся четырех. Найдите наименьший возможный суммарный вес всех монет.

Задачу решили: 32
всего попыток: 85
Задача опубликована: 08.07.19 13:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: anrzej

На каждой стороне треугольника отмечено по две точки, делящие её на три равных отрезка.

Прямоугольник в квадрате

Какую часть площади треугольника занимают эти три звезды, изображенные на рисунке?

Задачу решили: 43
всего попыток: 50
Задача опубликована: 15.07.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: anrzej

Найдите четырехзначное число, удовлетворяющее условию:
\sqrt{\frac{\overline{abcd}}{a+b+c+d}}=\overline{ab,cd} , где каждая буква в выражении \overline{klmn,pq}- это цифра, а вместе они образуют десятичное число.

Задачу решили: 42
всего попыток: 46
Задача опубликована: 26.07.19 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: solomon

Вычислите значение выражения \frac{lg 1\frac{1}{10}}{lg 10 \cdot lg 11}+\frac{lg 1\frac{1}{11}}{lg 11 \cdot lg 12}+...+ \frac{lg 1\frac{1}{99}}{lg 99 \cdot lg 100.

 

Задачу решили: 45
всего попыток: 59
Задача опубликована: 05.08.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

В треугольнике ABC sin A : sin B : sin C = 5 : 7 : 9. Найдите cos (A + B).

Задачу решили: 45
всего попыток: 60
Задача опубликована: 07.08.19 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Sam777e

Найдите сумму всех шестизначных чисел, являющихся полными квадратами, и у которых числа, представленные первыми тремя цифрами и последними тремя цифрами, отличаютсю по величине не более чем на единицу.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.