Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
45
всего попыток:
49
1+5*2m=n2, где m и n - натуральные числа. Найдите сумму всех возможных n.
Задачу решили:
36
всего попыток:
45
Функция f отображает натуральные числа в натуральные числа такая, что f(a)f(b) = f(ab), f(a) < f(b), если a < b, f(3) > 6. Найдите минимально возможное значение f(3).
Задачу решили:
40
всего попыток:
42
Пусть P(n) - произведение цифр натурального числа n. Найдите сумму всех n таких, что n2-17n+56=P(n).
Задачу решили:
34
всего попыток:
63
Расположим в порядке возрастания все стозначные числа, у которых сумма цифр равна их произведению. Какое число окажется на 13-м месте? В качестве ответа введите последние четыре младшие цифры найденного числа.
Задачу решили:
44
всего попыток:
56
Прямоугольный треугольник с катетами 21 и 28 разделен биссекрисой прямого угла на два треугольника. Найти расстояние между точками пересечения высот этих треугольников.
Задачу решили:
42
всего попыток:
52
В прямоугольном треугольнике АВС (угол С-прямой) проведены медиана АА1 и высота СС1. Точка пересечения их - M. Найти угол А в градусах, если |МС1|:|МС|=3:4.
Задачу решили:
48
всего попыток:
54
Диагонали трапеции равны 3 и 5, а отрезок, соединяющий середины оснований равен 2. Найти площадь трапеции.
Задачу решили:
29
всего попыток:
34
Множество состоит из различных простых чисел таких, что сумма любых трех также является простым. Какое наибольшее количество чисел может содержать такое множество?
Задачу решили:
53
всего попыток:
72
Ёлочка, изображенная на рисунке, получается из квадрата в результате бесконечного процесса следующим образом: квадрат по диагонали разрезается на два треугольника, один из них ложится в основание ёлочки, второй разрезается на два равных треугольника, один из них идет на построение ёлочки, второй разрезается на два равных треугольника, и так строится постоянно растущая ёлочка. Найдите величину угла АЕС. Ответ выразите в градусах, округлив до ближайшего целого числа.
Задачу решили:
27
всего попыток:
110
Имеется пять различных положительных целых чисел таких, что суммы всех возможных наборов из них различны и при этом наибольшее из этих чисел минимально возможное. В качестве ответа введите максимально возможную сумму среди всех таких пятёрок чисел.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|