Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
28
всего попыток:
70
Пусть S - множество всех рациональных чисел r вида r = 0,(abcdefgh), то есть чистых десятичных периодических дробей, имеющих минимальный период длиной 8. Найти сумму всех элементов S. Чистой периодической дробью (ЧПД) называется дробь, в которой период начинается с первого знака после запятой, например, 6/11 - ЧПД, а 7/12 - нет.
Задачу решили:
23
всего попыток:
89
Внутри равностороннего треугольника, включая и его стороны, выбрана произвольная точка. Из отрезков равных расстоянию от этой точки до вершин треугольника составляется новый треугольник. Сколько различных целочисленных значений в градусах может принимать наибольший угол нового треугольника?
Задачу решили:
22
всего попыток:
23
В выпуклом пятиугольнике длины сторон по часовой стрелке равны (последовательно) 13, 21, 28, 36 и 43. Докажите, что в такой пятиугольник нельзя вписать окружность.
Задачу решили:
42
всего попыток:
58
Вершину С правильного треугольника АВС соединили отрезком с точкой M, делящей сторону AB в отношении 3:5. В образовавшиеся при этом два треугольника вписали круги, площадь меньшего из них равна 52. Найдите площадь большего круга.
Задачу решили:
24
всего попыток:
75
Сколько существует различных (попарно не конгруэнтных) треугольников, площадь которых и площади квадратов, построенных на их сторонах, - целые числа, не превосходящие 10?
Задачу решили:
35
всего попыток:
43
В равнобедренном треугольнике АВС (АС - основание), боковая сторона которого равна 8, а основание равно радиусу описанной окружности, проведена высота BD и перпендикуляры DE, DF к боковым сторонам. Найти площадь пятиугольника AEOFC (O - центр описанной окружности).
Задачу решили:
17
всего попыток:
18
На каждой грани кубика написано число. При одновременном бросании двух кубиков кубик A выигрывает у кубика B, если число, выпавшее на кубике A больше числа, выпавшего на кубике B. Будем говорить, что кубик A сильнее кубика B, если кубик A чаще выигрывает у кубика B и записывать A > B. Можно ли на гранях пяти кубиков расставить числа от 1 до 30 (каждое по одному разу) так, чтобы оказалось: Зеленый кубик > Черный кубик > Оранжевый кубик > Желтый кубик > Белый кубик > Зеленый кубик ? На приведенном примере числа на кубиках расставлены случайным образом.
Задачу решили:
30
всего попыток:
51
Дан равносторонний треугольник KMN (|КМ|=32), вершины которого являются центрами квадратов, построенных на сторонах некоторого треугольника АВС. Найдите площадь треугольника АВС, а в ответе укажите ближайшее целое число.
Задачу решили:
21
всего попыток:
70
Если бумажную полосу единичной ширины завязать простым узлом так, чтобы он стал плоским, то узел примет форму правильного пятиугольника (рис. слева). Пятиугольник на рисунке справа получен из бумажной полосы завязыванием пяти таких узлов. Чему равна длина полосы, если в сложенном виде её противоположные концы совпадают с отрезком АВ. Ответ округлите до целого числа.
Задачу решили:
30
всего попыток:
33
На диагонали АС квадрата АВСD построили прямоугольник APQC (AP=AB) так,что вершина В оказалась внутри прямоугольника. Прямая PB пересекает сторону DQ треугольникa DPQ в точке К и делит его на два треугольника DPK и PQK, у которых площади S1 и S2 соответственно. Найти (|S1|2-|S2|2)/(|S1|*|S2|).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|