Лента событий:
Lec добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
101
всего попыток:
128
Найдите минимум x8+x4+x2+y8+y4+y2 при условии x+y=1.
Задачу решили:
62
всего попыток:
105
Найти все способы построения 2013 спортсменов в N>1 рядов так, чтобы в каждом ряду, начиная со второго, стояло на одного человека больше, чем в предыдущем. Ввести сумму всех возможных значений N.
Задачу решили:
52
всего попыток:
78
Найти все способы построения 2013 спортсменов в N>1 рядов так, чтобы в каждом ряду, начиная со второго, стояло больше людей чем в предыдущем. Ввести сумму всех возможных значений N (одно и то же значение N считать только один раз).
Задачу решили:
85
всего попыток:
96
Известно, что при некотором a многочлен P(x) = xn-axn−2 для всех n > 2 делится на x-2. Чему равно максимальное значение a?
Задачу решили:
60
всего попыток:
134
Стоимость билета в кино составляет 50 рублей. В очереди в кассу стоит 2012 зрителей. 1006 из них имеет только купюры по 50 рублей,
Задачу решили:
71
всего попыток:
142
Решите в целых числах уравнение (х2 - у2)2=16у+1. В ответе укажите сумму абсолютных величин компонент х и у всех решений.
Задачу решили:
39
всего попыток:
109
Найдите количество упорядоченных пар чисел (a,b) (0≤a,b≤10), для которых существует многочлен P(x) с целочисленными коэффициентами, и P(4)=a, P(11)=b?
Задачу решили:
63
всего попыток:
96
В прямоугольный треугольник, длины сторон которого составляют арифметическую прогрессию, вписана окружность, а в неё – ещё два прямоугольных треугольника. Один из этих треугольников подобен исходному («большому»), другой – равнобедренный. Площадь исходного треугольника – S1, вписанных – S2 и S3. Найдите значение (S2+S3)/S1.
Задачу решили:
42
всего попыток:
62
Найдите наибольшее натуральное k такое, что любые положительные числа, удовлетворяющие неравенству a2 > bc, удовлетворяют также неравенству (a2–bc)2 > k(b2–ca)(c2–ab).
Задачу решили:
45
всего попыток:
153
На доске 100×100 расставлены числа 1, 2 и 3 так, что в каждом прямоугольнике 1×3 встречаются все три числа, а в углах стоят единицы. Если эту доску раскрасить в шахматном порядке, то какое максимальное количество белых клеток будут единицами?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|