Лента событий:
fortpost решил задачу "Плохое место" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
24
всего попыток:
35
Наибольший собственный делитель натурального числа n больше на 2, чем квадрат наименьшего составного делителя n. Найдите сумму всех таких натуральных n.
Задачу решили:
18
всего попыток:
20
Стороны правильного треугольника со стороной n, где n∈N, разделены точками на единичные отрезки. На сколько частей делят плоскость всевозможные прямые, параллельные его сторонам и проходящие через точки разделения, если n=100? На рисунке изображены эти прямые для треугольника со стороной n=4. Они делят плоскость на 34 части.
Задачу решили:
25
всего попыток:
29
В квадрате ABCD точка М лежит на стороне ВС, а точка N - на стороне АВ. Прямые АМ и DN пересекаются в точке О. Найти площадь квадрата, если известно, что |DN|=4, |AM|=3, а косинус угла AOD=0.6.
Задачу решили:
21
всего попыток:
28
Четыре круга с различными целочисленными диаметрами D, D1, D2, D3 таковы, что D=D1 + D2 + D3. Для площадей этих кругов справедливо равенство S=2*(S1 + S2 + S3). Найти наименьший D.
Задачу решили:
21
всего попыток:
28
В день своего 18-летия Таня нарисовала выпуклый 18-угольник, каждый угол которого кратен 18 градусам.
Задачу решили:
19
всего попыток:
20
Стороны правильного треугольника со стороной n, где n∈N, разделеныточками на единичные отрезки. На сколько частей делят плоскость стороны треугольника и всевозможные прямые, параллельные его сторонам и проходящие через точки разделения, если n=100?
На рисунке изображены эти прямые для треугольника со стороной n=4. Они (и стороны треугольника) делят плоскость на 43 части.
Задачу решили:
17
всего попыток:
28
Равносторонний треугольник имеет сторону длины n, n∈N. Все стороны треугольника разделены точками на единичные отрезки. В этот треугольник вписаны n-1 равносторонних треугольников, все вершины которых находятся в точках деления. При этом исходный треугольник оказался разделен на части. На картинке изображены треугольники при n=32. Найдите соотношение площади части, полученной в центре, к площади исходного треугольника, когда n стремится к бесконечности.
Задачу решили:
27
всего попыток:
28
В треугольнике АВС проведена биссектриса СL. Найдите значение выражения 1/|АС| + 1/|ВС|, если |СL| = 5, cos AСB = 1/8 и cos ALС = 1/7.
Задачу решили:
27
всего попыток:
30
Внутри ожерелья из 8-и одинаковых жёлтых правильных 8-угольников заключён зелёный равносторонний 16-угольник, как показано на рисунке. Найдите квадрат отношения площади одного жёлтого 8-угольника к площади зелёного 16-угольника.
Задачу решили:
25
всего попыток:
30
В треугольнике АВС медиана AM разделена на три равных отрезка вписанной окружностью. Найти периметр треугольника, если |АВ|=5.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|