Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
44
всего попыток:
170
Сколько существует таких целых чисел 0<n<90, что tg(n°) можно выразить с помощью конечного количества квадратных корней (например n=30, 45, 60)?
Задачу решили:
25
всего попыток:
31
Построили прямоугольный треугольник OA0A1 (угол OA0A1 - прямой). Затем построили прямоугольный треугольник OA1A2 (угол OA1A2 - прямой), точки A0 и A2 находятся с разных сторон отрезка OA1, длины отрезков: |OA1|² = |OA0| • |OA2|. Затем построили прямоугольный треугольник OA2A3 (угол OA2A3 - прямой), точки A1 и A3 находятся на разных сторонах отрезка OA2, длины отрезков: |OA2|² = |OA1| • |OA3|. И так далее, несколько раз.
Сумма углов A0OA1 + A1OA2 + A2OA3 + . . . = 360°
Оказалось, что гипотенуза последнего треугольника лежит на отрезке OA0 (содержит его) и ровно в k раз длинее него, где k - целое число.
Найдите сумму всевозможных значений k.
Задачу решили:
45
всего попыток:
59
В треугольнике ABC sin A : sin B : sin C = 5 : 7 : 9. Найдите cos (A + B).
Задачу решили:
39
всего попыток:
49
sin10x+cos10x=11/36. Найдите sin12x+cos12x.
Задачу решили:
41
всего попыток:
41
На горизонтальной плоскости из трех точек отстоящих от основания антенны на 100, 200 и 300 м, углы, под которыми она видна в сумме составляют 90°. Определите высоту антенны.
Задачу решили:
41
всего попыток:
43
В треугольнике углы A, B и C такие, что cos3A+cos3B+cos3C=1. Найти наибольший угол треугольника в градусах.
Задачу решили:
28
всего попыток:
36
Для угла x и чисел a, b, c и cos x верно соотношение acos2x+bcosx+c=0. Составьте квадратичное соотношение с числами a, b и c для cos 2x. В качестве ответа введите сумму коэффициентов таких, что наибольший общий делитель их был равен 1 для a = 12, b = 8, с = -3..
Задачу решили:
25
всего попыток:
65
Найдите количество действительных решений уравнения x = 1964 sin x - 189.
Задачу решили:
20
всего попыток:
29
Последовательно применяя формулы для синуса и косинуса суммы двух углов, можно вывести формулы для синуса и косинуса суммы любого количества углов. Формулы для синуса и косинуса суммы n углов имеют вид суммы всевозможных произведений k синусов и m косинусов (k+m=n) отдельных углов, с какими-то коэффициентами. Т.к. формулы симметричны относительно углов, в каждой из них все слагаемые-призведения с одними и теми же k и m имеют один и тот же коэффициент. Обозначим его: Например: Найдите сумму квадратов S579,420 и C579,421.
Задачу решили:
17
всего попыток:
24
Найдите количество таких функций f(x), определённых для всех вещественных чисел, что Если таких функций бесконечно много, введите -1 (минус один).
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|