img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: fortpost решил задачу "Плохое место" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 23
всего попыток: 25
Задача опубликована: 12.02.24 08:00
Прислал: avilow img
Источник: ЕГЭ
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Lec

В правильной шестиугольной призме все ребра равны.

Две равные фигуры

Найдите угол между прямыми A1B и B1E в градусах.

Задачу решили: 9
всего попыток: 15
Задача опубликована: 23.02.24 08:00
Прислал: Sam777e img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Пусть R - луч, с вершиной в точке P(0; 0) и проходящий через точку (1013; 1001). M - это множество точек с натуральными координатами, не превосходящими 1016. Луч R начинает вращаться вокруг своей вершины P по часовой стрелке, пока на нём одновременно не окажутся как минимум 3 точки из M.

На какой угол повернулся луч R к этому моменту? В качестве ответа введите абсолютную величину тангенса этого угла.


Задачу решили: 9
всего попыток: 23
Задача опубликована: 01.03.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань. Буква О написана 3 раза, но мы не различаем эти буквы - у нас просто есть 4 различных символа Х, О, Р, Ш. Сколько раз в среднем надо бросить кубик, чтобы в последних 4-х бросках впервые выпали 4 разных символа?

Задачу решили: 10
всего попыток: 12
Задача опубликована: 08.04.24 08:00
Прислал: MikeNik img
Источник: Диалоги при игре в лото
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В большом мешке находятся 600 пронумерованных от 0 до 599 бочонков лото.

На билете лото напечатаны пять разных полей с числами. На первом поле - числа от 0 до 59, на втором - от 60 до 149, на третьем - от 150 до 269, на четвёртом - от 270 до 419 и на пятом - от 420 до 599.

В процессе игры из мешка, случайным образом, вынимают бочонки. Число, которое обозначено на вынутом бочонке вычеркивается в билете лото, а бочонок возвращается в мешок.

Билет лото считается выигрышным, и игра заканчивается, как только в каждом из пяти полей билета оказалось, по меньшей мере, вычеркнуто одно число.

Сколько раз в среднем надо вынуть бочонок из мешка, чтобы билет лото стал выигрышным?

 

Задачу решили: 20
всего попыток: 25
Задача опубликована: 10.04.24 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Натуральное число  делится без остатка на 4, на 9, на 49, и имеет 45 делителей, среди которых 1 и само это число. Найдите все такие натуральные числа. В ответе укажите их сумму.

Задачу решили: 16
всего попыток: 24
Задача опубликована: 12.04.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

Найдите наименьший корень уравнения ax = xa, где a = 18446744073709551616/6568408355712890625.

Задачу решили: 13
всего попыток: 29
Задача опубликована: 17.05.24 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Темы: геометрияimg
Лучшее решение: Lec

В прямоугольник с целочисленными взаимно простыми длинами сторон вписан прямоугольник с различными целочисленными сторонами так, что все его углы лежат на различных сторонах исходного четырехугольника. Одна из сторон вписанного четырехугольника в 2 раза меньше одной из сторон исходного. Минимально возможный (по площади) такой четырехугольник имеет размеры 10x11 со вписанным четырехугольником 5х10. Найдите вторую минимально возможную площадь исходного четырехугольника.

Задачу решили: 11
всего попыток: 18
Задача опубликована: 22.05.24 08:00
Прислал: user033 img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

В мешке есть шары 3 различных цветов. Поочередно берут один шар, смотрят на его цвет и кладут обратно в мешок.

Оказалось, для того чтобы вынуть хотя-бы раз шар каждого цвета, требуется в среднем 937/105 попыток.

Какое минимальное количество шаров может быть в мешке?

Задачу решили: 12
всего попыток: 13
Задача опубликована: 03.06.24 08:00
Прислал: Vkorsukov img
Источник: Подражение задаче 2643
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Kf_GoldFish

Найти пифагоров треугольник с наименьшим периметром, в который можно вписать две одинаковые окружности с радиусами больше 10, при этом одна окружность касается гипотенузы, катета и чевианы из прямого угла, а другая - гипотенузы, второго катета и той же чевианы. В ответе укажите периметр найденного треугольника.

Задачу решили: 21
всего попыток: 22
Задача опубликована: 14.06.24 08:00
Прислал: vochfid img
Источник: По мотивам задачи 2655
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: TALMON (Тальмон Сильвер)

Пусть p и q – длины отрезков одной из биссектрис треугольника, получаемые разбиением её точкой пересечения биссектрис (отрезок p примыкает к вершине). Даны соответствующие отношения p:q для трёх биссектрис этого треугольника: 5:4; 7:2 и 2:1. Найдите периметр этого треугольника, если длина одной из его сторон равна 411 и искомый периметр – целое число.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.