img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: fortpost решил задачу "Плохое место" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 77
всего попыток: 126
Задача опубликована: 05.03.12 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Рассмотрим ряд Тейлора функции:

f(x) = 1/(1-x-x²)

в окрестности x=0. Чему равен коэффициент этого ряда при x10?

Задачу решили: 42
всего попыток: 113
Задача опубликована: 18.04.12 08:00
Прислал: levvol img
Источник: Елена Шольц
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Через маленький населённый пункт Грюнхаузен проходит по прямой линии оживлённая трасса федерального значения. Жители городка добились наконец постройки объездной дороги. График показывает участок карты, на которой прямая через точки А и C — бывшая трасса, а линия, проходящая через красные точки — новая объездная дорога. Все расстояния даны в километрах.

Новая дорога проходит через точки A, B, C и в точке А плавно переходит в старую трассу. Эта дорога описывается полиномом третьего порядка с рациональными коэффициентами.

Закрашенная область – собственно городок. Его северная граница соответствует параболе c рациональными коэффициентами. Граница городка проходит через точки D,E и F.

Участок земли, находящийся между новой дорогой, северной границей городка и прямолинейными участками старой трассы (до пунктов А и C), будет использован под промзону. Сколько денег получит городская казна при продаже участка по цене 10.95 евро за квадратный метр? Ответ представьте в миллионах евро, округлив до ближайшего целого числа.

Задачу решили: 67
всего попыток: 164
Задача опубликована: 27.01.14 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Если x=0,99999999999999999999 (двадцать девяток после запятой), то чему равна целая часть значения выражения:

x/1 + x2/2 + x3/3 + . . . ?

Задачу решили: 47
всего попыток: 116
Задача опубликована: 30.04.14 08:00
Прислал: Dremov_Victor img
Источник: Корейская математическая олимпиада
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: trial (Трибунал Данилов)

Тройка действительных чисел (x, y, z) удовлетворяет условию x2 + y2 + z2 = 1. Пусть максимальное значение, которое принимает выражение (x2 - y2)(y2 - z2)(z2 - x2), равно M. Найдите 1/M2.

Задачу решили: 37
всего попыток: 41
Задача опубликована: 15.07.15 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Пусть функция f(x) не равная тождественно нулю удовлетворяет условию:
f(x+y2n+1)=f(x)+f(y)2n+1 для всех натуральных n и действительных x и y. Известно, что f'(0)>0, найдите f'(10).

Задачу решили: 43
всего попыток: 69
Задача опубликована: 01.07.20 08:00
Прислал: avilow img
Источник: авторская
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: Sam777e

Два благородных крокодильчика начинают поедать  с двух концов единичный отрезок  по следующей схеме: первый со своего конца откусывает 1/2 отрезка, второй со своего конца откусывает 1/3  оставшейся части отрезка, затем первый  откусывает 1/4 остатка, второй  откусывает 1/5 остатка, и т.д. 

Два благородных крокодильчика

Какую часть отрезка съест первый крокодильчик?

Ответе укажите в процентах, округлив его до целого.

Задачу решили: 28
всего попыток: 49
Задача опубликована: 27.11.20 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Окружность x2+y2=1 растянули в два раза по горизонтали и получили эллипс x2+4y2=4. При этом действии, площадь фигуры, ограниченной кривой, выросла в два раза. А во сколько раз выросла длина кривой?

Ответ округлите до 5-и десятичных знаков после запятой.

Задачу решили: 25
всего попыток: 88
Задача опубликована: 09.06.21 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

При некоторых значениях k на синусоиде y= ksinx можно расположить квадрат, все вершины которого лежат на синусоиде, а его центр совпадает с началом координат. Один из квадратов изображен на рисунке.

Квадраты и синусоида

Сколько таких квадратов существует при k =14?

Задачу решили: 9
всего попыток: 19
Задача опубликована: 09.05.22 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: andervish (Андрей Вишневый)

«Докажем», что любое число ε>0 оно не меньше 1. Естественно, это «доказательство» содержит ошибку. Найдите в каком утверждении ошибка.

Пусть ε - любое положительное число.

1. Как известно, множество рациональных чисел в отрезке [0, 1] счётно и всюду плотно.

2. Пронумеруем его элементы: r1, r2, r3, ...

3. Построим вокруг них окрестности: mn = (rn – ε/2n+1, rn + ε/2n+1), n=1, 2, 3, ...

4. Рассмотрим множество U – объединение всех этих окрестностей. Его мера m(U) меньше или равна сумме мер составляющих: Σm(mn) = ε.

5. Множество U, как объединение открытых множеств, также является открытым множеством.

6. Как открытое множество на числовой прямой, множество U может быть представимо как объединение конечного или счётного множества взаимно непересекающихся интервалов u1, u2, u3, ...

7. Рассмотрим какие-нибудь два соседних из этих интервалов (т.е. любой один из них + ближайший к нему с той или другой стороны). Они либо лежат вплотную друг к другу, т.е. имеют общий конец, либо между ними есть зазор.

8. Если между ними есть зазор, это означает, что первоначально не были охвачены все рациональные числа. Следовательно, остаётся только вариант общего конца.

9. Таким образом, множество U покрывает весь отрезок [0, 1] кроме не больше чем счётное множество общих концов, имеющее меру 0.

10. Следовательно, мера множества U не меньше 1, и ε ≥ 1.

Задачу решили: 31
всего попыток: 34
Задача опубликована: 16.01.23 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: aaa_uz

При каком максимальном целом k ряд 1k/7 + 2k/7 + 3k/7 + . . . сходится?

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.