img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: vochfid добавил комментарий к задаче "Десятичная запись квадрата" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 170
всего попыток: 194
Задача опубликована: 07.11.11 08:00
Прислала: Ulkas img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: bbny

Пусть запись a$b обозначает наименьшее из чисел a + b и 2b. Решите уравнение x$3=5$x.

Задачу решили: 141
всего попыток: 158
Задача опубликована: 11.11.11 08:00
Прислала: Marishka24 img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: xxxSERGEYxxx

Все 10 цифр десятичной системы счисления выписывают слева направо в таком порядке, что на каждом этапе (то есть после выписывания каждой из цифр) число, образованное уже выписанными цифрами оказывается составным. Какое максимальное число можно получить таким образом?

+ 5
  
Задачу решили: 32
всего попыток: 42
Задача опубликована: 16.11.11 08:00
Прислал: admin img
Источник: Турнир городов
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

За круглым столом заседают N рыцарей. Каждое утро чародей Мерлин сажает их в другом порядке. Начиная со второго дня Мерлин разрешил рыцарям делать в течение дня сколько угодно пересадок такого вида: два сидящих рядом рыцаря меняются местами, если только они не были соседями в первый день. Рыцари стараются сесть в том же порядке, что и в какой-нибудь из предыдущих дней: тогда заседания прекратятся. Какое наибольшее число дней Мерлин гарантированно может проводить заседания? (Рассадки, получающиеся друг из друга поворотом, считаются одинаковыми. Мерлин за столом не сидит.)

Задачу решили: 56
всего попыток: 171
Задача опубликована: 28.11.11 08:00
Прислал: admin img
Источник: Турнир городов
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Dremov_Victor (Виктор Дремов)

Два муравья проползли каждый по своему замкнутому маршруту на доске 9 × 9. Каждый полз только по сторонам клеток доски и побывал в каждой из 100 вершин клеток ровно один раз. Каково наименьшее возможное число таких сторон, по которым проползали и первый, и второй муравьи?

Задачу решили: 129
всего попыток: 169
Задача опубликована: 09.12.11 08:00
Прислала: Margosha img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Каждый день в течение ста дней подряд Марго записывала показания уличного термометра. Затем ей пришло в голову вычислить все попарные произведения ста полученных значений. Среди вычисленных Марго произведений ровно 2013 оказались ниже нуля.

Сколько дней была нулевая температура? 

Задачу решили: 115
всего попыток: 300
Задача опубликована: 21.12.11 08:00
Прислал: Dremov_Victor img
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: leonidr321 (Леонид Розенблат)

Цифры от 0 до 9 (каждую по одному разу и число не может начинаться с нуля) выписывают слева направо в таком порядке, чтобы в любой момент число, образованное выписанными цифрами, было составным. Какое наименьшее число можно получить таким образом?

Задачу решили: 163
всего попыток: 177
Задача опубликована: 26.12.11 08:00
Прислала: Margosha img
Источник: Подробности - в комментарии
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Решить ребус:

АПОРТ*4=ТРОПА

(одинаковыми буквами обозначены одинаковые цифры, разными - разные, число не может начинаться с нуля, система счисления - десятичная)

В ответе запишите значение слова ТРОПА. 

Задачу решили: 71
всего попыток: 119
Задача опубликована: 30.12.11 08:00
Прислала: Margosha img
Источник: Турнир журнала "Квант"
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Volga (Xxx Xxx)

По кругу выписали несколько попарно различных натуральных чисел, каждое из которых не больше 2011.

Оказалось, что для любых двух чисел, которые стоят через одно, их сумма кратна трём.

Какое максимальное количество чисел могло быть выписано? 

Задачу решили: 77
всего попыток: 152
Задача опубликована: 04.01.12 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: zmerch

Найдите сколько наборов натуральных чисел a1, a2, ..., a9 обладает следующиеми свойствами:
1 ≤ a1 ≤ a2 ≤ ... ≤ a9 ≤ 9 
a5 = 5
a9 - a1 ≤ 7.

Задачу решили: 59
всего попыток: 188
Задача опубликована: 09.01.12 08:00
Прислала: Margosha img
Источник: Математическая олимпиада Швеции
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: nellyk

Решить в целых числах уравнение

(8x-5y)2+(3y-2z)2+(3z-7x)2=2 

и записать в ответе число его решений.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.