Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
27
всего попыток:
61
На доске написаны числа 2, 3, 4, ..., 2019, 2020. За рубль можно отметить любое число. Если какое-то число уже отмечено, можно бесплатно отмечать его делители и числа, кратные ему. За какое наименьшее число рублей можно отметить все числа на доске?
Задачу решили:
17
всего попыток:
24
Даны три точки: A = (-20, 0, 0), B = (20, 0, 0), C(0, 20√3, 0). Назовем точку D(x, y, z) подходящей, если расстояние от неё до какой-нибудь из этих трёх точек равно сумме расстояний от D до двух других. Чему равен объём наименьшего шара, содержащего все подходящие точки? В качестве ответа введите целую часть значения объёма.
Задачу решили:
32
всего попыток:
50
Четыре действительных числа x1, x2, x3, x4 таковы, что каждое число, сложенное с произведением остальных, равно 2. Сколько различных таких четвёрок существует?
Задачу решили:
29
всего попыток:
32
В треугольник со сторонами 5, 6 и 9 вписан круг и построены к нему касательные, параллельные сторонам треугольника. Эти касательные отсекают три новых треугольника, в каждый из которых также вписаны круги. Вычислите сумму площадей всех четырех кругов. Эта сумма представляется в виде π*p/q, где p и q - целые числа. В качестве ответа введите p/q.
Задачу решили:
29
всего попыток:
36
Учитель дал детям три задачи: A, B, C. 25 школьников решили хотя бы одну задачу. Среди школьников, не решивших задачу A, но решивших B, в два раза больше, чем решивших C. Школьников, решивших только задачу A, на одного больше, чем остальных школьников, решивших задачу A. Сколько школьников решили только задачу B, если среди школьников, решивших только одну задачу, половина не решила задачу A?
Задачу решили:
35
всего попыток:
40
Рассматривается последовательность действительных чисел {an}, n =0, 1, 2. … При n>0 члены последовательности удовлетворяют уравнению: Найдите величину a5 (то есть член последовательности с индексом 5).
Задачу решили:
35
всего попыток:
42
В треугольнике с целочисленными сторонами длина биссектриса угла, образованного двумя сторонами 27 и 15, является целым числом. Найти периметр этого треугольника.
Задачу решили:
31
всего попыток:
32
На олимпиаде, которая длилась n дней, было вручено m медалей. В первый день была вручена одна медаль и еще 1/7 от оставшихся m-1 медалей. Во второй день были вручены две медали и еще 1/7 от оставшихся после этого медалей и т. д. Наконец, в n-й день были вручены оставшиеся n медалей. Сколько было всего медалей вручено?
Задачу решили:
28
всего попыток:
52
В квадрате 3х3 находятся восемь квадратных фишек 1х1 со стрелками и одно свободное место в центре. Все стрелки направлены в центр квадрата (рис. слева). Передвигая поочередно фишки на свободное место добейтесь расположения фишек, чтобы все стрелки были направлены от центра (рис. справа). В ответе укажите наименьшее число ходов. Ход – это передвижение фишки на соседнее свободное место по вертикали или горизонтали.
Задачу решили:
32
всего попыток:
32
Найдите сумму всех целых положительных чисел n таких, что произведение цифр в десятичной записи которых равно n2-10n-22.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|