Лента событий:
badfomka решил задачу "Календарь будущего" (Информатика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
24
всего попыток:
51
На рисунке изображен октаэдр, вписанный в куб. Две его вершины О1 и О2 лежат в центрах противоположных граней куба, а вершины A, B, C и D – середины ребер куба, перпендикулярных этим граням. У куба три пары противоположных граней, поэтому в него можно вписать таким образом три октаэдра. Какую часть куба составляет объем общей части этих трех октаэдров.
Задачу решили:
31
всего попыток:
36
Внутри квадрата со стороной 100 расположены 4 круговых сектора с радиусами, равными стороне квадрата, центрами в вершинах квадрата каждый и радиальным углом 90°. Найти площадь пересечения всех 4-х секторов. Ответ округлить до ближайшего целого.
Задачу решили:
25
всего попыток:
29
В равнобедренный треугольник, боковая сторона которого в 2 раза больше основания, вписана окружность. К этой окружности проведены касательные паралельно сторонам треугольника, которые отсекли 3 треугольника. В каждый из этих треугольников тоже вписаны окружности. Найти отношение суммы площадей этих 3-х кругов к площади основного круга.
Задачу решили:
20
всего попыток:
48
7 первых натуральных чисел, кратных 7-и, расположили в каком-то произвольном порядке в одну строку без пробелов, например так: 7142128354249. Соединив первую и последнюю цифры, получили замкнутую цепочку из 13-и цифр (смотрите рисунок). Затем разъединили какие-то две соседние цифры и снова натянули цепочку в одну строку. Получилось 13-значное число. На рисунке это число: 2835424971421. Какое наименьшее возможное число? Замечание: Наши цифры как игрушка «Ванька-встань-ка» - сколько бы их ни поворачивать, они всегда смотрят на нас вертикально.
Задачу решили:
30
всего попыток:
39
В числовом ребусе:
Задачу решили:
41
всего попыток:
46
В выражении слева бесконечное число слагаемых, справа - произведений, x > 0: Найти x.
Задачу решили:
27
всего попыток:
37
Два луча, исходящие из прямого угла равнобедренного прямоугольного треугольника, делят гипотенузу на три целочисленных отрезка.Найти наибольшую длину гипотенузы, если угол между лучами 45°, длина наименьшего отрезка гипотенузы равна 20.
Задачу решили:
38
всего попыток:
41
Расшифруйте пример на умножение С * НОВЫМ = ГОДОМ, в котором одинаковым буквам соответствуют одинаковые цифры и разным буквам – разные цифры, причем, в примере используются цифры от 0 до 7. В ответе запишите одиннадцатизначное число СНОВЫМГОДОМ.
Задачу решили:
26
всего попыток:
27
Из одной вершины равностороннего треугольника провели прямую, которая пересекает противоположную сторону и делит треугольник на два треугольника. В каждый из них вписаны окружности, радиусы которых относятся как 2:3. Каково отношение длин отрезков(меньшей к большемй), на которые была разделена сторона равностороннего треугольника?
Задачу решили:
20
всего попыток:
64
Из вершины угла в 120 градусов равнобедренного треугольника выходят два луча под углом 60 градусов между ними и делят основание на три различных целочисленных отрезка. Найти основание третьего по величине такого треугольника.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|