Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
33
всего попыток:
44
В трапеции ABCD с основаниями |AD|=12, |BC|=8 на продолжении ВС отметили точку М (|СМ|=2). Отрезок АМ, пересекая CD в точке К, разделил трапецию на две части. Найти отношение их площадей (меньшей к большей).
Задачу решили:
27
всего попыток:
50
Есть три коробки: в первой коробке 97 камней, во второй – 104, а в третьей коробке камней нет. За один ход берут по одному камню из любых двух коробок и кладут в оставшуюся. Сделали некоторое количество таких ходов. В первой коробке оказался 1 камень. Какое наибольшее число камней могло оказаться в третьей коробке?
Задачу решили:
28
всего попыток:
30
Для положительных x, y и z таких, что x2+y2+z2+2xyz=1, найдите максимум xy+yz+zx-2xyz.
Задачу решили:
26
всего попыток:
29
Радиус вписанной в равнобедренный треугольник АВС (|АС|=|ВС|) окружности равен 4. На прямой АВ взята точка D, удаленная от прямой АС и ВС на расстоянии 11 и 3 соответственно. Найти косинус угла DBC.
Задачу решили:
38
всего попыток:
45
На базаре продаются рыбки, большие и маленькие. Сегодня 3 большие и 1 маленькая стоят вместе столько же, сколько 5 больших вчера. А 2 большие и 1 маленькая сегодня стоят вместе столько же, сколько 3 больших и 1 маленькая вчера. Сколько вчерашних маленьких рыбок можно купить на сегодняшных: 1 большую и 2 маленькие?
Задачу решили:
30
всего попыток:
32
Сколько вариантов решений имеет тождество: пять/шесть=5/6. Различным буквам соответствуют различные цифры, одинаковым буквам соответствуют одинаковые цифры.
Задачу решили:
29
всего попыток:
58
В треугольнике со сторонами 5, 7, 8 находится точка так, что отрезки, соединяющие её с вершинами треугольника образуют равные углы между собой (по 120°). Найти квадрат суммы длин этих отрезков.
Задачу решили:
33
всего попыток:
38
Найди сумму двух наименьших натуральных чисел n таких, что n - кратно 5, n+1 - кратно 7, n+2 - кратно 9, n+3 - кратно 11.
Задачу решили:
26
всего попыток:
36
Отрезки, соединяющие основания высот в остроугольном треугольнике, образуют пифагорову тройку 5,12,13. Найти площадь этого треугольника.
Задачу решили:
31
всего попыток:
41
Найдите минимальное a такое, что уравнение x2-ax+2022=0 имеет 2 целых положительных корня.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|