img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: fortpost решил задачу "Плохое место" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 25
всего попыток: 28
Задача опубликована: 26.02.24 08:00
Прислал: admin img
Источник: Всероссийская олимпиада по математике
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Вовочка в понедельник купил 1 мороженое, 2 пирожных и 3 мармеладки и заплатил за это 235 рублей. Во чторник он купил 3 порции мороженого, 2 пирожных и 1 мармеладку и заплатил за это 205 рублей. Сколько рублей должен будет заплатить Вовочка в среду, если он купит 6 порций мороженого, 5 пирожных и 4 мармеладки?

Задачу решили: 16
всего попыток: 30
Задача опубликована: 28.02.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2601
Вес: 1
сложность: 1 img
класс: 1-5 img
баллы: 100
Лучшее решение: Sam777e

Найдите количество различных (неконгруэнтных) фигур, каждую из которых можно сложить следующими двумя способами:

Задачу решили: 9
всего попыток: 23
Задача опубликована: 01.03.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
баллы: 100
Лучшее решение: user033 (Олег Сopoкин)

На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань. Буква О написана 3 раза, но мы не различаем эти буквы - у нас просто есть 4 различных символа Х, О, Р, Ш. Сколько раз в среднем надо бросить кубик, чтобы в последних 4-х бросках впервые выпали 4 разных символа?

Задачу решили: 25
всего попыток: 25
Задача опубликована: 04.03.24 08:00
Прислал: admin img
Источник: Всероссийская олимпиада по математике
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: solomon

К двузначному числу слева приписали 1, а справа 8, в итоге оно увеличилось в 28 раз. Найдите сумму всех таких двузначных чисел.

Задачу решили: 25
всего попыток: 30
Задача опубликована: 06.03.24 08:00
Прислал: admin img
Источник: Всероссийская олимпиада по математике
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: vochfid

Найдите наибольшее натуральное число, которое в 9 раз больше своего остатка от деления на 1024.

Задачу решили: 10
всего попыток: 15
Задача опубликована: 11.03.24 08:00
Прислал: DOMASH img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Лучшее решение: Sam777e

Площадь выпуклого восьмиугольника с углами 135 градусов и вершинами в узлах сетки  равна 12,5 единичных квадратов (см. рисунок).

Восьмиугольники с равными углами

Сколько аналогичных восьмиугольников площадью 16 единичных квадратов можно разместить на сетке?

Задачу решили: 18
всего попыток: 24
Задача опубликована: 13.03.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: Kf_GoldFish

Два прямоугольных треугольника, в каждом из которых проведены высоты с прямого угла и по одной биссектрисе с острого угла. В одном тругольнике точка пересечения высоты и биссектрисы делит высоту на отрезки 15 и 9, считая от вершины прямого угла. В другом треугольнике делит биссектрису на отрезки 9 и 6, считая от вершины, с которой проведена биссектриса. Найти отношение площадей треугольников (меньшей к большей).

Задачу решили: 8
всего попыток: 53
Задача опубликована: 15.03.24 08:00
Прислал: TALMON img
Источник: По мотивам задачи 2606
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Сколько различных центрально-симметричных фигур можно сложить из трёх произвольных различных пентамино?

Каждая фигура, даже если её можно сложить несколькими способами, как, например, эта

Три пентамино

считается только один раз.

+ 0
+ЗАДАЧА 2626. 4598722 = 2024 (Ибн Альберт)
  
Задачу решили: 5
всего попыток: 15
Задача опубликована: 18.03.24 08:00
Прислал: TALMON img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100

Расставьте в левой части равенства 4598722=2024 любое количество символов из набора +-*/() так, чтобы оно стало верным.

Переставлять цифры местами нельзя. Правая часть равенства должна остаться без изменения.

Введите в ответ количество существенно различных вариантов решения, а в подробном решении покажите эти варианты.

 [Если значения левых частей двух вариантов окажутся равными при замене всех цифр на единицы, то такие варианты "существенно различными" не считаются. Например варианты:
 4598-72+2 и 4598-(72-2)
 459+87*22 и 459+(-87)*(-22)
не считаются "существенно различными".]

Задачу решили: 19
всего попыток: 22
Задача опубликована: 20.03.24 08:00
Прислал: solomon img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Лучшее решение: avilow (Николай Авилов)

Найти диаметр окружности, описанной около шестиугольника, у которого длины каждой из 4-х сторон равна 15, каждой из оставшихся 2-х других сторон равна 7.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.