Лента событий:
fortpost решил задачу "Плохое место" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
25
всего попыток:
28
Вовочка в понедельник купил 1 мороженое, 2 пирожных и 3 мармеладки и заплатил за это 235 рублей. Во чторник он купил 3 порции мороженого, 2 пирожных и 1 мармеладку и заплатил за это 205 рублей. Сколько рублей должен будет заплатить Вовочка в среду, если он купит 6 порций мороженого, 5 пирожных и 4 мармеладки?
Задачу решили:
16
всего попыток:
30
Найдите количество различных (неконгруэнтных) фигур, каждую из которых можно сложить следующими двумя способами:
Задачу решили:
9
всего попыток:
23
На гранях кубика написаны все буквы слова "ХОРОШО" - по одной букве на грань. Буква О написана 3 раза, но мы не различаем эти буквы - у нас просто есть 4 различных символа Х, О, Р, Ш. Сколько раз в среднем надо бросить кубик, чтобы в последних 4-х бросках впервые выпали 4 разных символа?
Задачу решили:
25
всего попыток:
25
К двузначному числу слева приписали 1, а справа 8, в итоге оно увеличилось в 28 раз. Найдите сумму всех таких двузначных чисел.
Задачу решили:
25
всего попыток:
30
Найдите наибольшее натуральное число, которое в 9 раз больше своего остатка от деления на 1024.
Задачу решили:
10
всего попыток:
15
Площадь выпуклого восьмиугольника с углами 135 градусов и вершинами в узлах сетки равна 12,5 единичных квадратов (см. рисунок). Сколько аналогичных восьмиугольников площадью 16 единичных квадратов можно разместить на сетке?
Задачу решили:
18
всего попыток:
24
Два прямоугольных треугольника, в каждом из которых проведены высоты с прямого угла и по одной биссектрисе с острого угла. В одном тругольнике точка пересечения высоты и биссектрисы делит высоту на отрезки 15 и 9, считая от вершины прямого угла. В другом треугольнике делит биссектрису на отрезки 9 и 6, считая от вершины, с которой проведена биссектриса. Найти отношение площадей треугольников (меньшей к большей).
Задачу решили:
8
всего попыток:
53
Сколько различных центрально-симметричных фигур можно сложить из трёх произвольных различных пентамино? Каждая фигура, даже если её можно сложить несколькими способами, как, например, эта считается только один раз.
Задачу решили:
5
всего попыток:
15
Расставьте в левой части равенства 4598722=2024 любое количество символов из набора +-*/() так, чтобы оно стало верным. Переставлять цифры местами нельзя. Правая часть равенства должна остаться без изменения. Введите в ответ количество существенно различных вариантов решения, а в подробном решении покажите эти варианты. [Если значения левых частей двух вариантов окажутся равными при замене всех цифр на единицы, то такие варианты "существенно различными" не считаются. Например варианты:
Задачу решили:
19
всего попыток:
22
Найти диаметр окружности, описанной около шестиугольника, у которого длины каждой из 4-х сторон равна 15, каждой из оставшихся 2-х других сторон равна 7.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|