Лента событий:
fortpost решил задачу "Три числа и степени" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
40
всего попыток:
62
Пусть N равно произведению всех возможных значений (n2+nm+m2) для всех пар натуральных чисел n и m таких, что 1 ≤ n < m ≤ 100. Чему равен остаток от деления N на 101?
Задачу решили:
54
всего попыток:
92
Найдите наименьшее натуральное число, которое не может быть выражено в виде (2a-2b)/(2c-2d), где a, b, c, d - также натуральные числа.
Задачу решили:
36
всего попыток:
61
Найти сумму всех натуральных чисел a таких, что существует натуральное число b и верно: a+b2+(НОД(a,b))3=a·b·НОД(a,b)
Задачу решили:
60
всего попыток:
105
Найти количество упорядоченных троек натуральных чисел a < b < c таких, что a1/2 + b1/2 + c1/2 = 20001/2.
Задачу решили:
66
всего попыток:
143
Найти количество троек целых чисел -10 ≤ a,b,c ≤ 10 удовлетворяющих уравнению a/(b/c)=(a/b)/c.
Задачу решили:
123
всего попыток:
153
2, 3, 7, 25, 121,... Какое следующее число?
Задачу решили:
42
всего попыток:
277
Про натуральное число, в десятичной записи которого все цифры различны, известно, что произведение нескольких подряд стоящих начальных цифр равно произведению остальных его цифр. Найти количество чисел с таким свойством.
Задачу решили:
71
всего попыток:
74
Пость m и n - натуральные числа такие, что m2-n!=2016. Найти максимум m+n.
Задачу решили:
44
всего попыток:
128
Найдите количество различных пар натуральных чисел m и n таких, что 1/m + 1/n = 1/100000.
Задачу решили:
56
всего попыток:
74
На доске написаны n последовательных натуральных чисел, начиная с 1. Когда было стерто одно число, то оказалось, что среднее арифметическое стало равным 35 7/17. Какое число стерли?
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|