Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
68
всего попыток:
115
Обозначим a(n) сумму цифр натурального числа n. Найдите количество трехзначных чисел n, удовлетворяющих условию a(n) = a(2n) и все цифры которых нечетны.
Задачу решили:
48
всего попыток:
129
n = 3 × 77. Найдите наибольший общий делитель 7n - 1 и 7n + 4949.
Задачу решили:
40
всего попыток:
52
Венцом последовательности назовем число, полученное так: сначала вычисляем модуль разности первого и второго членов, затем модуль разности этого числа и третьего члена и т.д. до последнего члена. Пусть у нас все 28 костяшек домино сложены в цепочку по правилам домино, то есть костяшки прикладываются половинками с одинаковыми числами. Числа на половинках образуют последовательность из 56 членов. Известно, что она начинается с пятерки. Чему равен венец этой последовательности?
Задачу решили:
54
всего попыток:
152
Для натурального числа k обозначим
Задачу решили:
43
всего попыток:
72
Для целых чисел a, b, c, n, удовлетворяющих двум следующим условиям, найдите 7a + 13b + 97c.
Задачу решили:
44
всего попыток:
205
Найдите остаток от деления на 155 следующего выражения:
Задачу решили:
50
всего попыток:
61
Положительные целые числа x, y удовлетворяют условию y2 = (x2 - 482)(x2 - 552). Найдите остаток от деления x + y на 1000.
Задачу решили:
43
всего попыток:
69
Найти сумму всех целых чисел n таких, что
Задачу решили:
66
всего попыток:
97
Найти наименьшее натуральное число N такое, что N! кратно 102015.
Задачу решили:
37
всего попыток:
74
Известно, что a1 < a2 < ... < a2014 простые числа и a12+a22+...+a20142 делится на 2015. Найти минимально возможное a1.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|