Лента событий:
Sam777e решил задачу "Дырявый квадрат-3" (Математика):
Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Задачу решили:
67
всего попыток:
101
Известно, что 12x1+22x2+32x3+...+2002 x200≤2040000, где x1, x2, x3 ,…. X200 принимают значения 0 или 1. Найти максимальное значение 12x1+22x2+32x3+...+2002 x200.
Задачу решили:
55
всего попыток:
659
В одном плоском лесу есть бесконечно много деревьев. Расстояние между любыми двумя деревьями - целое число метров. Рассмотрим три дерева, стояших в точках A, B и C. Какое минимально возможное положительное значение угла ABC в градусах?
Задачу решили:
52
всего попыток:
157
Для натурального числа обозначим
Найдите наибольший общий делитель чисел .
Задачу решили:
48
всего попыток:
238
Найдите наибольшее натуральное a, для которого существует такое натуральное b, что ab+2a=b4a.
Задачу решили:
90
всего попыток:
103
Даны 6 карточек. На каждой из них написано натуральное число. Вы произвольно берете три карточки и вычисляете сумму чисел на них. Вы сделали все 20 возможных комбинаций и заметили, что десять полученных сумм равны 16, а десять других - 18. Какое число из написанных на карточках наименьшее?
Задачу решили:
70
всего попыток:
119
В прямоугольном треугольнике ABC с прямым углом при вершине А, биссектриса прямого угла пересекает гипотенузу BC в точке D, так что DAB = 45°. Если CD = 1 и BD = AD + 1, найти длину AD.
Ответ представить в виде целого числа, умножив результат на 1000 и округлив до ближайшего целого.
Задачу решили:
55
всего попыток:
67
Пусть --- все натуральные числа, меньшие и взаимно простые с . Найдите значение суммы дробных частей (Здесь {x} обозначает дробную часть x, {x}=x-[x], где [x] наибольшее целое число, не превосходящее x (целая часть x).)
Задачу решили:
134
всего попыток:
155
Через одну и ту же точку провели 2012 различных окружностей. На какое наименьшее число частей они могут разбить плоскость?
Задачу решили:
46
всего попыток:
60
В остроугольном треугольнике ABC угол которого , внутри отрезков AB и AC можно выбрать две точки D и E так, что BD=CE=BC. Найдите длину отрезка DE, если квадрат расстояния между центрами вписанной и описанной окружностей треугольника ABC .
Задачу решили:
57
всего попыток:
94
Если шахматному коню запретить дважды вставать на одно и тоже поле, то можно найти такое начальное положение коня, что через три хода он будет запатован (у него не будет возможных ходов). Например, поместим коня на поле f2, тогда после ходов 1.Ke4 2.Kg3 3.Kh1 - конь запатован. А можно ли запатовать коня на бесконечной шахматной доске? В ответе укажите минимальное достаточное количество ходов для достижения цели.
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.
|