img img img img img img img img img img img img img img img img img img img img img img
Логотип Человек живет, пока думает.
Решайте задачи и живите долго!
Для участия в проекте необходимо
и достаточно зарегистрироваться!
Rss Регистрация || Вход
Вход
Diofant.ru
Картинка
Отражение Отражение Картинка Картинка
отражение
Лента событий: fortpost решил задачу "Плохое место" (Математика):
Рисунок
Rss

Задачи: Математика   

Пожалуйста, не пишите нам, что вы не можете решить задачу.
Если вы не можете ее решить, значит вы не можете ее решить :-)
Показывать на странице:
Задачу решили: 36
всего попыток: 54
Задача опубликована: 28.10.20 08:00
Прислал: avilow img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Числа натурального ряда записаны на клетчатой бумаге в форме спирали: в одной из клеток записано число 1, справа от неё в соседней клетке записано число 2, вниз от неё в соседней клетке записано число 3, и так далее, двигаясь по часовой стрелке образуется спираль из натурального ряда.

Спирали

В ней можно выделить концентрические квадратные рамки, центром которых является клетка с числом 1. Найдите сумму чисел в рамке размером 101х101.

Задачу решили: 31
всего попыток: 36
Задача опубликована: 16.11.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

Для действительных x, y, z, t верны соотношения
x+y+z=t,
1/x+1/y+1/z=1/t,
x3+y3+z3=10003

Найдите сумму x+y+z+t.

Задачу решили: 28
всего попыток: 35
Задача опубликована: 18.11.20 08:00
Прислал: solomon img
Источник: Ленинградская математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: Sam777e

В системе уравнений:
x2=a+(y-z)2,
y2=b+(z-x)2,
z2=c+(x-y)2,
a, b и c - различные натуральные числа, x,y и z - различные целые числа. Найти наименьшую сумму а+b+c.

Задачу решили: 32
всего попыток: 53
Задача опубликована: 20.11.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Пусть x, y и z - целые числа и x/(y + z) + y/(z + x) + z/(x + y) = 4. Найдите наименьшее положительное значение x+y+z.

Задачу решили: 31
всего попыток: 52
Задача опубликована: 26.11.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: avilow (Николай Авилов)

Два парахода идут по морю с постоянными скоростями по фиксированным направлениям. В 9:00 они, когда они начали свое движение расстояние между ними было 20 км, в 9:35 - 15 км, а в 9:55 - 13 км. Через сколько минут после начала движения расстояние между ними стало минимальным?

Задачу решили: 39
всего попыток: 49
Задача опубликована: 30.11.20 08:00
Прислал: avilow img
Источник: По мотивам книги И.М. Гельфанд "Функции и гра...
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

На рисунке представлены графики шести функций, содержащие операцию «целая часть числа» (антье).

Функции и графики

Графики обозначены латинскими буквами. Ниже приведены формулы этих функций, которые обозначены цифрами. Установите соответствие между графиками функций и их формулами.

В ответе запишите шестизначное число, которое получается после замены букв в слове ABCDEF соответствующими им цифрами. 

Задачу решили: 30
всего попыток: 49
Задача опубликована: 04.12.20 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: TALMON (Тальмон Сильвер)

Найдите минимальное значение a2+b2, где a и b - действительные числа, для которых уравнение x4+ax3+bx2+ax+1=0 имеет по крайней мере один действительный корень.

Задачу решили: 30
всего попыток: 35
Задача опубликована: 09.12.20 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: mikev

Найдите количество непрерывных функций f(x), определенных для всех действительных x и удовлетворяющих уравнения xf(y)+yf(x)=(x+y)f(x)f(y) для произвольных x и y.

Задачу решили: 35
всего попыток: 60
Задача опубликована: 15.01.21 08:00
Прислал: admin img
Вес: 1
сложность: 1 img
класс: 8-10 img
баллы: 100
Темы: алгебраimg
Лучшее решение: vochfid

Найдите все целые решения уравнения: p5+p3+2=q2-q. В ответе укажите значение суммы всех q.

Задачу решили: 27
всего попыток: 42
Задача опубликована: 20.01.21 08:00
Прислал: admin img
Источник: Международная математическая олимпиада
Вес: 1
сложность: 1 img
класс: 6-7 img
баллы: 100
Темы: алгебраimg
Лучшее решение: DOMASH (Александр Домашенко-Мирный)

Множество значений суммы S = a/(a+b+d) + b/(a+b+c) + c/(b+c+d) + d/(a+c+d), где a, b, c, d - положительные действительные числа расположены внутри некоторого минимально возможного отрезка действительной оси. Укажите середину этого отрезка.

 
Внимание! Если Вы увидите ошибку на нашем сайте, выделите её и нажмите Ctrl+Enter.